Answer:
alright that sounds like a recipe i gota try
Fireworks
An exothermic reaction is one where the products have lower energy than the reactants, so the reaction yields energy. The chemical compounds present in firework fuel release a lot of energy upon oxidation. Photosynthesis is endothermic, settling of silt is not a chemical reaction, it is a physical change. Finally, the bubble formation in soda is not exothermic; otherwise, the sodas would become very hot very fast.
For a closed system, you need two things:
1) a conservation of mass within the boundaries of the system
2) the ability to freely exchange energy to & from the "closed" system with a surrounding external system
So, the answer is <u><em>never</em></u>, since your defining the "system" as the water within the bathtub, and an open bathtub is exposed to evaporation, which is not conserving mass within the defined "system".
Answer:
Percentage abundance of 121 Sb is = 57.2 %
Percentage abundance of 123 Sb is = 42.8 %
Explanation:
The formula for the calculation of the average atomic mass is:
Given that:
Since the element has only 2 isotopes, so the let the percentage of first be x and the second is 100 -x.
For first isotope, 121 Sb :
% = x %
Mass = 120.9038 u
For second isotope, 123 Sb:
% = 100 - x
Mass = 122.9042 u
Given, Average Mass = 121.7601 u
Thus,

Solving for x, we get that:
x = 57.2 %
<u>Thus, percentage abundance of 121 Sb is = 57.2 %
</u>
<u>percentage abundance of 123 Sb is = 100 - 57.2 % = 42.8 %</u>
If you mean hydrate as in <em>MgSO4 · 7H2O, </em>then simply find the molar mass of each element you see.
For the example above, that means you would add the molar mass (found on the periodic table) of Mg, then S, then 4(O), 14(H), and 7(O).
The results would be your molar mass for the hydrate.
I hope this is what you meant by your question!