Lithium Oxide
I just search it up to be honest
Answer:
4.823 x 10^-19 J
Explanation:
Energy is calculated by E = hv where h - Planck's constant in joule.s
v - frequency.
in this particular question the wave length is 4.12 x 10^-7 m. to exhaustively use this we need a relation between wave length & frequency. c=wv where C is approximately 3 x 10^8m/s
-v = c/w = 3x10^8m/s / 4.12 x 10^-7m = 7.28 x 10^14 Hz or 1/sec
now we can simply use Planck's constant in E=hv =
(6.626 x 10^-34) x (7.28 x 10^14Hz) = 4.823 x 10^-19 J.
Answer:
amount of silver chloride required is 0.015 moles or 2.1504 g
Explanation:
0.1M AgCL means 0.1mol/dm³ or 0.1mol/L
1L = 1000mL
if 0.1mol of AgCl is contained in 1000mL of solution
then x will be contained in 150mL of solution
cross multiply to find x
x = (0.1*150)/1000
x= 0.015 moles
moles of silver chloride present in 150 mL of solution is 0.15 moles
To convert this to grams, simply multiply this value by the molar mass of silver chloride
molar mass of silver chloride AgCl =107.86 + 35.5
=143.36 g/mol
mass of AgCl = moles *molar mass
=0.015*143.36
=2.1504g
=
<u>Answer:</u> The vapor pressure of the liquid is 0.293 atm
<u>Explanation:</u>
To calculate the vapor pressure of the liquid, we use the Clausius-Clayperon equation, which is:
where,
= initial pressure which is the pressure at normal boiling point = 1 atm
= pressure of the liquid = ?
= Heat of vaporization = 28.9 kJ/mol = 28900 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
= initial temperature = 341.88 K
= final temperature = 305.03 K
Putting values in above equation, we get:
Hence, the vapor pressure of the liquid is 0.293 atm