The answer to your question is B.
Answer:
Explanation:
Let us first take a look at the image below;
In the acid - base reaction; we can see the transfer of electrons that takes place;
We can also see that the reaction goes in the direction which converts the stronger acid and the stronger base to the weaker acid and the weaker base.
The stronger acid is shown with the one with more negative Value.
∴ The equilibrium constant for the acid-base reaction is expressed as:
From Value (shown in the image below), it is clear and vivid that hydrobromic acid is a stronger acid than the ethyloxonium ion, therefore the equilibrium lies to the right.
From the chemical equation (shown in the attached image); the equilibrium constant for the acid-base reaction can be expressed as:
The energy range expected is 6.6 × 10^-19 J < E < 7.33 × 10^-19 J
The energy of the photon is given by;
E = hc/λ
E = energy of the photon
h = Plank's constant
c = speed of light
λ = wavelength of light
For the upper boundary range;
E = ?
h = 6.6 × 10^-34 Js
c = 3 × 10^8 m/s
λ = 270 × 10^-9
E = 6.6 × 10^-34 Js × 3 × 10^8 m/s / 270 × 10^-9
E = 7.33 × 10^-19 J
For the lower range;
E = ?
h = 6.6 × 10^-34 Js
c = 3 × 10^8 m/s
λ =300 × 10^-9
E = 6.6 × 10^-34 Js × 3 × 10^8 m/s / 300 × 10^-9
E = 6.6 × 10^-19 J
Hence, the energy range 6.6 × 10^-19 J < E < 7.33 × 10^-19 J
Learn more: brainly.com/question/24857760
Answer
is: 0.375 moles are present in 8.4 liters of nitrous oxide at stp.
V(N₂O) = 8.4 L.
V(N₂O) =
n(N₂O) · Vm.
Vm = 22,4 L/mol.<span>
n</span>(N₂O) = V(N₂O) ÷ Vm.
n(N₂O) = 8.4 L ÷ 22.4 L/mol.
n(N₂O) = 0.375 mol.<span>
Vm - molare volume on STP.</span>
Alright, so that means we have 0.68 mol of the compound
For each 1 mol of the compound, we have 4*1 oxygens (because there are four oxygens in the formula)
Therefore for each 0.68 mol of the compound, we have 4*0.68 moles of oxygen!