Answer:
35750.4 Joules
Explanation:
Using the formula as follows;
Q = m × c × ∆T
Where;
Q = amount of heat (joules)
m = mass of substance (g)
c = specific heat capacity (J/g°C)
∆T = change in temperature (°C)
According to the provided information,
mass (m) = 320.0 grams
c = 4.2 J/g°C
∆T = (50.8°C - 24.2°C) = 26.6°C
Q = ?
Using; Q = m × c × ∆T
Q = 320 × 4.2 × 26.6
Q = 35750.4 J
Answer:

Explanation:
You must calculate the moles of P₄O₁₀, convert to moles of P₂O₅, then convert to molecules of P₂O₅.
1. Moles of P₄O₁₀

2. Moles of P₂O₅
P₄O₁₀ ⟶ 2P₂O₅
The molar ratio is 2 mol P₂O₅:1 mol P₄O₁₀
3. Molecules of P₂O₅

Answer:
Regions of the Electromagnetic Spectrum
Wavelength (m)Frequency (Hz)Radio> 1 x 10-1< 3 x 109Microwave1 x 10-3 - 1 x 10-13 x 109 - 3 x 1011Infrared7 x 10-7 - 1 x 10-33 x 1011 - 4 x 1014Optical4 x 10-7 - 7 x 10-74 x 1014 - 7.5 x 1014
A: Na3PO4 + MnCl2 > Mn3(PO4)2 + NaCl
The more particles (ions or molecules) that you can put into solution, the lower the freezing point.
the answer is E. 2.0 M nacl