The ball may attracted to the magnet.
<h3>How can we understand that the hanging ball will be attracted to the magnet or not?</h3>
- From the question, we understand that the ball is attracted by the north pole of the bar magnet, then the bar magnet flipped over and the south pole is brought near the hanging ball.
- As we know, in this type of experiments of bar magnet most of the times the ball is made out of steel.
- Steel is a magnetic material.
- Magnetic materials gets attracted to the magnet at both the North and South pole.
- This can be compared to how neutral objects also gets attracted to the positively and negatively charged rods through the Polarization force.
So, If the bar magnet is flipped over and the south pole is brought near the hanging ball, The ball will be attracted to the magnet.
Learn more about the bar magnet:
brainly.com/question/27943723
#SPJ4
<span>You are given two cars, one in front of the other, that are traveling down the highway at 25 m/s. You are also given a frequency of 500 Hz of the car travelling behind it. You are asked what is the frequency heard by the driver of the lead car. This problem can be solved using the Doppler effect
sound frequency heard by the lead car = [(speed of sound + lead car velocity)/( speed of sound + behind car velocity)] * (sound of frequency of the behind car)
</span>sound frequency heard by the lead car = [(340 m/s + 25 m/s)/(340 m/s - 25 m/s)] * (500 Hz)
sound frequency heard by the lead car = 579 Hz
Answer: the father of the nuclear physics is Ernest Rutherford
Explanation:
Answer: 288 m
Explanation: 288 m is the correct answer because the question states that the ball is thrown at 96 m every second, and our question tells us that the ball travels 3 seconds. This means we have to multiply 96 x 3 = 288 m.