Answer:
z = 0.8 (approx)
Explanation:
given,
Amplitude of 1 GHz incident wave in air = 20 V/m
Water has,
μr = 1
at 1 GHz, r = 80 and σ = 1 S/m.
depth of water when amplitude is down to 1 μV/m
Intrinsic impedance of air = 120 π Ω
Intrinsic impedance of water = 
Using equation to solve the problem

E(z) is the amplitude under water at z depth
E_o is the amplitude of wave on the surface of water
z is the depth under water



now ,


taking ln both side
21.07 x z = 16.81
z = 0.797
z = 0.8 (approx)
B strength training I think that’s the answer
Answer:
b. melting
Explanation:
it is made of sediments and that is not necessary
Answer:


Explanation:
Here mass density of rod is varying so we have to use the concept of integration to find mass and location of center of mass.
At any distance x from point A mass density


Lets take element mass at distance x
dm =λ dx
mass moment of inertia

So total moment of inertia

By putting the values

By integrating above we can find that

Now to find location of center mass


Now by integrating the above


So mass moment of inertia
and location of center of mass 
This is what wiki says hope it helps
A displacement is a vector whose length is the shortest distance from the initial to the final position of a point P.[1] It quantifies both the distance and direction of an imaginary motion along a straight line from the initial position to the final position of the point.
A displacement may be also described as a 'relative position': the final position of a point (Sf) relative to its initial position (Si), and a displacement vector can be mathematically defined as the difference between the final and initial position vectors: