Answer:
r = 3.61x
M/s
Explanation:
The rate of disappearance (r) is given by the multiplication of the concentrations of the reagents, each one raised of the coefficient of the reaction.
r = k.![[S2O2^{-8} ]^{x} x [I^{-} ]^{y}](https://tex.z-dn.net/?f=%5BS2O2%5E%7B-8%7D%20%5D%5E%7Bx%7D%20x%20%5BI%5E%7B-%7D%20%5D%5E%7By%7D)
K is the constant of the reaction, and doesn't depends on the concentrations. First, let's find the coefficients x and y. Let's use the first and the second experiments, and lets divide 1º by 2º :



x = 1
Now, to find the coefficient y let's do the same for the experiments 1 and 3:




y = 1
Now, we need to calculate the constant k in whatever experiment. Using the first :


k = 4.01x10^{-3} M^{-1}s^{-1}[/tex]
Using the data given,
r = 
r = 3.61x
M/s
I will have to go with carbon monoxide
Answer:
LOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOONGGGGGGGGGGGGGGGGGGGGGGGGGGG
Explanation:
We are given with the initial volume of the substance and the molarity. The first thing that needs to be done is to multiply the equation in order to obtain the number of moles such as shown below.
number of moles = (40 mL) x (1 L / 1000 mL) x (0.3433 moles / L)
number of moles = 0.013732 moles
To get the value of the molarity of the diluted solution, we divide the number of moles by the total volume.
molarity = (0.013732 moles) / (750 mL / 1000 mL/L) = 0.0183 M
Similarly, we can solve for the molarity by using the equation,
M₁V₁ = M₂V₂
Substituting the known values in the equation,
(0.3433 M)(40 mL) = M₂(750 mL)
M₂ = 0.0183 M