This is because U-235 decays naturally by a process known as alpha radiation. This means that it releases an alpha particle (two neutrons and two protons connected together).
Another reason that U-235 is ideal for producing nuclear power is that unlike most materials, U-235 can undergo induced fission. When a free neutron collides with a U-235 nucleus, the nucleus will usually capture the neutron and split extremely quickly. The splitting of a single U-235 atom can release roughly 200 MeV (million electron volts).
H₂SO₄:
V=0,95L
Cm=0,420mol/L
n = CmV = 0,42mol/L * 0,95L = 0,399mol
KOH:
V=0,9L
Cm=0,26mol/L
n = CmV = 0,26mol/L * 0,9L = 0,234mol
H₂SO₄ + 2KOH ⇒ K₂SO₄ + 2H₂O
1mol : 2mol
0,399mol : 0,234mol
limiting reagent
reamins: 0,399mol - 0,117mol = 0,282mol
n = 0,282mol
V = 0,950L + 0,900L = 1,85L
Cm = n / V = 0,282mol / 1,85L ≈ 0,152M
Answer:
I do not know what is the solvent for steel is. sorry
Explanation:
(80+125+45) / 10 = 250/10 =25
25 meters per minute= 0.41 meters/second
the direction and stopping time is irrelevant to the problem.
Answer:
5.625 moles of oxygen, O₂.
Explanation:
The balanced equation for the reaction is given below:
4Al + 3O₂ —> 2Al₂O₃
From the balanced equation above,
4 moles of Al reacted with 3 moles of O₂.
Finally, we shall determine the number of mole of O₂ required to react with 7.5 moles of aluminum, Al. This can be obtained as illustrated below:
From the balanced equation above,
4 moles of Al reacted with 3 moles of O₂.
Therefore, 7.5 moles of Al will react with = (7.5 × 3)/4 = 5.625 moles of O₂.
Thus, 5.625 moles of O₂ is needed for the reaction.