

To solve these type of problems you need to use the pythagoras theorem ⇨ Hypotenuse² = Base² + Altitude².
Here,
- Altitude = 1.6 cm.
- Base = 1.2 cm
- Hypotenuse = x
Now, let's solve for x.
Hypotenuse² = Base² + Altitude²
x² = (1.2)² + (1.6)²
x² = 1.44 + 2.56
x² = 4
x = √4
x = <em><u>2</u></em><em><u>.</u></em>
- So, the value of x is <em><u>2</u><u> </u><u>cm.</u></em>
<h3>
<u>NOTE</u><u> </u><u>:</u><u>-</u></h3>
- Pythagoras theorem can be used only in the cases of right-angled triangles. Here, it's given that the triangle is right angled so we can use this theorem.
- To solve the squares if decimals, take them as whole numbers & then just add the decimal points. For example, ⇨ for (1.2)², take it as 12² , then multiply 12 by 12, you'll get 144. Now, add the decimal place accordingly ⇨ 1.44 . So, (1.2)² = 1.44.
Answer:
= 3b/4
Step-by-step explanation:
= b . 4/12 + b . 3/12 + b . 2/12
Apply the fraction rule: a/c + b/c = a + b/c
= b . 4 + b . 3 + b . 2/12
= 4b + 3b + 2b/12
Add similar elements: 4b + 3b + 2b = 9b
= 9b/12
Cancel 9b/12: 3b/4
= 3b/4
Comparative relationships between numbers