Answer:


Explanation:
Impulse and Momentum
They are similar concepts since they deal with the dynamics of objects having their status of motion changed by the sudden application of a force. The momentum at a given initial time is computed as

When a force is applied, the speed changes to
and the new momentum is

The change of momentum is

The impulse is equal to the change of momentum of an object and it's defined as the average net force applied times the time it takes to change the object's motion

Part 1
The T-ball initially travels at 10 m/s and then suddenly it's stopped by the glove. The final speed is zero, so

The impulse is


The magnitude is

Part 2
The force can be computed from the formula

The direction of the impulse the T-ball receives is opposite to the direction of the force exerted by the ball on the glove, thus 


Answer:
9.96 m/s
Explanation:
mass of car, m = 487 kg
radius of track, R = 53.3 m
coefficient of static friction, μ = 0.19
acceleration due to gravity, g = 9.8 m/s^2
let v be the maximum speed so that the car can go without flying off the track.
The formula for the maximum speed is given by


vmax = 9.96 m/s
What if when I find my product, I get the same compound as I did in my
reactant? For example, FeCl3 + HCl ->FeCl3 + HCl. Then something is
wrong. In this case, FeCl3 and HCl usually don't react. In very
concentrated solutions of HCl, the FeCl4^- or FeCl6^-3 ion can form.
In... There you go my friend
Answer:
V = 6.53 × 10^14
h = 6.626 × 10^-34
E = hV
E = (6.626 × 10^-34) (6.53 × 10^14)
E = 4.33 × 10^-19
Answer:
a) Magnitude of maximum emf induced = 0.0714 V = 71.4 mv
b) Maximum current through the bulb = 0.00793 A = 7.93 mA
Explanation:
a) The induced emf from Faraday's law of electromagnetic induction is related to angular velocity through
E = NABw sin wt
The maximum emf occurs when (sin wt) = 1
Maximum Emf = NABw
N = 1
A = 4 cm² = 0.0004 m²
B = 6 T
w = (284/60) × 2π = 29.75 rad/s
E(max) = 1×0.0004×6×29.75 = 0.0714 V = 71.4 mV
Note that: since we're after only the magnitude of the induced emf, the minus sign that indicates that the induced emf is 8n the direction opposite to the change in magnetic flux, is ignored for this question.
b) Maximum current through the bulb
E(max) = I(max) × R
R = 9 ohms
E(max) = 0.0714 V
I(max) = ?
0.0714 = I(max) × 9
I(max) = (0.0714/9) = 0.00793 A = 7.93 mA
Hope this Helps!!