Answer: The given statement is false.
Explanation:
According to Newton's third law of motion, every action has an equal and opposite reaction. So, when we apply force in one direction on an object then the object also applies a force in the opposite direction.
Hence, it is true that two forces in each pair of forces act in opposite directions.
For example, when we push a wooden box of 20 kg in the forward direction then the box will also apply a force in the opposite direction.
But the statement two forces in each pair can either both act on the same body or they can act on different bodies is false.
Answer: The angle of inclination is nearly 30°
Explanation:
For a body on an inclined plane, the coefficient of friction between the body and the plane is equal to the ratio of the moving force applied to the body to the frictional force acting on the body.
If uK coefficient of friction;
Fm is the moving force
R is the normal reaction on the body
Mathematically uK = Fm/R
Fm = WSin(theta)
R = Wcos(theta)
uK = Wsin(theta)/Wcos(theta)
uK = tan(theta)
theta = arctan(uK)
If uK is 0.58
theta = arctan0.58
theta = 30°
The angle of the inclined will be 30°
Answer:
v_squid = - 2,286 m / s
Explanation:
This exercise can be solved using conservation of the moment, the system is made up of the squid plus the water inside, therefore the force to expel the water is an internal force and the moment is conserved.
Initial moment. Before expelling the water
p₀ = 0
the squid is at rest
Final moment. After expelling the water
= M V_squid + m v_water
p₀ = p_{f}
0 = M V_squid + m v_water
c_squid = -m v_water / M
The mass of the squid without water is
M = 9 -2 = 7 kg
let's calculate
v_squid = 2 8/7
v_squid = - 2,286 m / s
The negative sign indicates that the squid is moving in the opposite direction of the water
Cznxjsjssbsishsisbsisbsisbsbeoeb