Answer: 2.60 x 10^23 molecules
50.0 grams x (1 mol/115.79 grams) = 0.431816219 moles
0.431816219 mol x (6.02 x 10^23 molecules/1 mol) = 2.599533638 x 10^23 molecules (final answer is rounded)
Answer:
metal ball that moves at high speed
Explanation:
In comparison with liquids and gases, solids are more dense. The answer is letter B. <span>The
solid has a more definite shape and volume. The particles are locked into
place. It cannot be further compressed due to the bond that exists between the
molecules. The kinetic energy of the molecules is close to none because the
molecules are so close and so compact with each other. </span>
Answer:
Explanation:
There are three types of interactions involved between the particles when solution are formed.
1 : Solute - solute interaction:
2 : Solute - solvent interaction:
3 : Solvent - solvent interaction:
1 : Solute - solute interaction:
It is the inter-molecular attraction between the solute particles.
2 : Solute - solvent interaction:
It involve the inter-molecular attraction between solvent and solute particles.
3 : Solvent - solvent interaction:
It involve the intermolecular attraction between solvent particles.
Solutions are formed if the intermolecular attraction between solute particles are similar to the attraction between solvent particles.
Exothermic process:
The process will exothermic when solute solvent bonds are formed with the release of energy and energy required to brake the solute-solute particles and solvent solvent particles are less.
Endothermic process:
The process will be endothermic when energy required to break the solute-solute particles and solvent solvent particles are higher than energy released when solute solvent bonds are formed .
To convert the given value to the desired one, use the proper unit conversions and dimensional analysis. Use the following conversion for the first set.
1 g = 100 cg
1 L = 1000 mL
Using the concept presented above,
V = (59800 cg/L)(1 g/100 cg)1 L/1000 mL)
V = 0.598 g/mL