1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Viefleur [7K]
3 years ago
13

High voltage power is often carried in wire bundles made up of individual strands. In your initial post to the discussion, discu

ss the forces on the strands of wire due to the current flowing through them. What would happen if the force acted opposite of the known behavior? Provide a detailed description.
Physics
1 answer:
Firdavs [7]3 years ago
6 0

Answer:

<em>There will  be a huge problem of holding the wire strands together, and the power losses will also be amplified.</em>

Explanation:

The force per unit length on two current carrying conductors, lying parallel to each other is proportional to the product of the current through the conductors, and inversely proportional to their distance apart. This force is attractive if the current flows through these conductors in the same direction, and is repulsive if it flows in the opposite direction.

For the strand of wire that make up a high voltage wire bundle, there will be a force of attraction pulling the wires closer to each other, and they will experience the maximum pulling force possible, since they lie next to each other. This force helps to hold these wires in a high tension wire strand together, limiting the area, and reducing "skin effect."

In the case that this wires in the wire strand acts in opposite of the known behavior, the wires will repel and push each other apart. This pushing apart will increase power loss due "skin effect" which is increased by an increase in exposed surface area of the wire strands. This will pose a big problem for high tension transmission.

You might be interested in
According to Newton’s law of universal gravitation, which statements are true?
andreyandreev [35.5K]

Before we solve this, we should know this fact:

According to Newton's Law of Gravitation, the force between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. The force acts along the line joining the centres of the two objects. It can be shown by this:

F ∝ \frac{Mm}{ {d}^{2} }

Now, let us check all the options.

A. As we move to higher altitudes, the force of gravity on us decreases.

<em>This </em><em>statement </em><em>is </em><em>true.</em>

The force of gravity is inversely proportional to the square of distance from the centre of the earth. If, we go up the surface of the earth, the distance from the centre of the earth increases and hence the value of force of gravity decrease. So, force of gravity decreases with altitude.

B. As we move to higher altitudes, the force of gravity on us increases.

<em>This </em><em>statement</em><em> </em><em>is </em><em>false.</em>

We have already got the result in option A. that the force of gravity decreases with altitude. It never increases with altitude.

C. As we gain mass, the force of gravity on us decreases.

<em>This </em><em>statement</em><em> </em><em>is </em><em>false.</em>

The force of gravity is directly proportional to the product of the masses. So, if increase our mass, then the force of gravity will also increase and if we decrease our mass, then the force of gravity decreases.

D. As we gain mass, the force of gravity on us increases.

<em>This </em><em>statement</em><em> is</em><em> </em><em>true.</em>

As mentioned earlier in option C., the force of gravity is directly proportional to the product of the masses of the earth and another object. So, as we gain mass, the force of gravity on us increases.

E. As we move faster, the force of gravity on us increases.

<em>This </em><em>statement</em><em> is</em><em> </em><em>true</em><em>.</em>

Here, we have to consider a different formula. According to Newton's Second Law,

F = ma, where F is the force, m is the mass and a is the acceleration.

In other words,

F ∝ a, i.e., force is directly proportional to acceleration.

We know, acceleration is the rate of change of velocity of an body within a time period.

So, if speed is increased, then acceleration will also be greater, which results in the increase of force. So, as we move faster, the force of gravity on us increases.

<u>Answers:</u>

A: As we move to higher altitudes, the force of gravity on us decreases.

D: As we gain mass, the force of gravity on us increases.

E: As we move faster, the force of gravity on us increases.

Hope you could understand.

If you have any query, feel free to ask.

7 0
2 years ago
Introduced species often thrive and multiply in an environment very different from their original one. Why are they often able t
Anestetic [448]
They begin to adapt into their new location. They then end up having adaptations to help them survive.
8 0
3 years ago
I need DISPLACEMENT please.<br><br>I have Average speed, i need Displacement.
Lapatulllka [165]
Define displacement and I'll help you
4 0
3 years ago
During a baseball game, a batter hits a high pop-up. If the ball remains in the air for 6.22 s, how high does it rise? The accel
BigorU [14]

Answer:

47.4 m

Explanation:

When an object is thrown upward, it rises up, it reaches its maximum height, and then it goes down. The time at which it reaches its maximum height is half the total time of flight.

In this case, the time of flight is 6.22 s, so the time the ball takes to reach the maximum height is

t=\frac{6.22}{2}=3.11 s

Now we consider only the downward motion of the ball: it is a free fall motion, so we can find the vertical displacement by using the suvat equation

s=ut+\frac{1}{2}gt^2

where

s is the vertical displacement

u = 0 is the initial velocity

t = 3.11 s is the time

g=9.8 m/s^2 is the acceleration of gravity (taking downward as positive direction)

Solving the  formula, we find

s=\frac{1}{2}(9.8)(3.11)^2=47.4 m

7 0
3 years ago
Astronomical observatories have been available since ancient times, and many cultures set aside special sites for astronomical o
inysia [295]

Answer:

Telescope

Explanation:

Telescope is usually defined as an optical instrument that is commonly used to observe the objects in a magnified way that are located at a large distance from earth. These telescopes are comprised of lenses and curved mirrors that are needed to be arranged in a proper way in order to have a prominent look. It is commonly used by the astronomers.

This was first constructed by Hans Lippershey in the year 1608.

6 0
3 years ago
Other questions:
  • Calculate the heat energy released when 13.3 g of liquid mercury at 25.00 C is converted to solid mercury at its melting point.C
    10·1 answer
  • A bug walks exactly halfway around the edge of a circular cupcake with a diameter of 5 cm what is the distance he traveled and w
    5·1 answer
  • Four students measured the acceleration of gravity. The accepted value for their location is 9.78 m/s2. Which student's measurem
    9·2 answers
  • Would this one be correct?(C.)
    13·1 answer
  • Which of these is closest to the age of our solar system?
    9·1 answer
  • A skier is moving down a snowy hill with an acceleration of 0.40 m/s2. The angle of the slope is 5.0∘ to the horizontal. What is
    12·1 answer
  • A parallel plate capacitor is connected to a battery that maintains a constant potential difference between the plates. If the p
    6·1 answer
  • If the effects of heat and friction are ignored, the amount of work output is always _______ the amount of work input, even when
    7·1 answer
  • 10. On Christmas Eve night when all the Who's are sleeping, are they still using energy? Explain this by using
    5·1 answer
  • Please help
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!