1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ad-work [718]
3 years ago
10

Equations 22-8 and 22-9 are approximations of the magnitude of the electric field of an electric dipole, at points along the dip

ole axis. consider a point p on that axis at distance z = 3.00d from the dipole center(where d is the separation distance between the particles of the dipole). let eappr be the magnitude of the field at point p as approximated by equations 22-8 and 22-9. let eact be the actual magnitude. by how much is the ratio eappr/eact less than 1?
Physics
2 answers:
Ber [7]3 years ago
7 0

Answer:

The answer is 0.94 N/C

Explanation:

The actual magnitude of the dipole at a distance Z from the centre is equal to

E_{actual} =\frac{q}{2\pi e_{0} Z^{3} } \frac{d}{(1-(\frac{d}{2z})^{2}  )^{2} }

if z = 8d

E_{actual} =\frac{q}{2\pi e_{0}(3d)^{3}  } \frac{d}{(1-(\frac{d}{6d})^{2})^{2}   } \\E_{actual} =3.92x10^{-2} \frac{q}{2\pi e_{0}d^{2}  }

the approx magnitude of the dipole at a distance Z from the centre is equal to

E_{approx} =\frac{1}{2\pi e_{0}   } \frac{qd}{(Z^{3}    } \\E_{approx} =3.7x10^{-2} \frac{q}{2\pi e_{0}d^{2}  }

The ratio is

E_{approx}/E_{actual}  =\frac{3.7x10^{-2} \frac{q}{2\pi e_{0}d^{2}  }}{3.92x10^{-2} \frac{q}{2\pi e_{0}d^{2}  }} =0.94N/C

OleMash [197]3 years ago
6 0

On axis of the dipole the electric field is given by

E = \frac{kq}{(r - \frac{d}{2})^2} - \frac{kq}{(r + \frac{d}{2})^2}

E = \frac{kq(r + d/2)^2 - (r - d/2)^2}{(r^2 - \frac{d^2}{4})^2}

E_{act} = \frac{kq*2rd}{(r^2 - \frac{d^2}{4})^2}

now if we approximate above equation

E_{eppr} = \frac{kq*2d}{r^3}

now we will find the ratio of these two

\frac{E_{eppr}}{E_{act}} = \frac{(r^2 - \frac{d^2}{4})^2}{r^4}

put r = 3d

\frac{E_{eppr}}{E_{act}} = \frac{(9d^2 - \frac{d^2}{4})^2}{81d^4}

\frac{E_{eppr}}{E_{act}} = \frac{(9- \frac{1}{4})^2}{81}

\frac{E_{eppr}}{E_{act}} = 0.945

<em>so above is the ratio of two field</em>

You might be interested in
A football punter wants to kick the ball so that it is in the air for 4.5 s and lands 50 m from where it was kicked. Assume that
irakobra [83]

Answer:

(a) The angle of projection is 63 degree.

(b) The velocity of projection is 24.5 m/s.

Explanation:

Height, h = 1 m

horizontal distance, d = 50 m

time, t = 4.5 s

Let the initial velocity is u and the angle is A.

(a) Horizontal distance = horizontal velocity x time

50 = u cos A x 4.5

u cos A = 11.1 .....(1)

Use second equation of motion in vertical direction

h = u t + 0.5 gt^2\\\\- 1 = u sin A \times 4.5 - 0.5 \times 9.8\times 4.5^2\\\\u sin A = 21.8 ..... (2)

Divide (2) by (1)

tan A = 1.97

A = 63 degree

(b) Substitute the value of A in equation (2)

u x sin 63 = 21.8

u = 24.5 m/s

7 0
3 years ago
In Anchorage, collisions of a vehicle with a moose are so common that they are referred to with the abbreviationMVC. Suppose a 1
lara31 [8.8K]

Answer:

Part a)

f = \frac{8}{9}

Part b)

f = \frac{120}{169}

Part c)

So from above discussion we have the result that energy loss will be more if the collision occurs with animal with more mass

Explanation:

Part a)

Let say the collision between Moose and the car is elastic collision

So here we can use momentum conservation

m_1v_{1i} = m_1v_{1f} + m_2v_{2f}

1000 v_o = 1000 v_{1f} + 500 v_{2f}

also by elastic collision condition we know that

v_{2f} - v_{1f} = v_o

now we have

2v_o = 2v_{1f} + v_o + v_{1f}

now we have

v_{1f} = \frac{v_o}{3}

Now loss in kinetic energy of the car is given as

\Delta K = \frac{1}{2}m(v_o^2 - v_{1f}^2)

\Delta K = \frac{1}{2}m(v_o^2 - \frac{v_o^2}{9})

so fractional loss in energy is given as

f = \frac{\Delta K}{K}

f = \frac{\frac{4}{9}mv_o^2}{\frac{1}{2}mv_o^2}

f = \frac{8}{9}

Part b)

Let say the collision between Camel and the car is elastic collision

So here we can use momentum conservation

m_1v_{1i} = m_1v_{1f} + m_2v_{2f}

1000 v_o = 1000 v_{1f} + 300 v_{2f}

also by elastic collision condition we know that

v_{2f} - v_{1f} = v_o

now we have

10v_o = 10v_{1f} + 3(v_o + v_{1f})

now we have

v_{1f} = \frac{7v_o}{13}

Now loss in kinetic energy of the car is given as

\Delta K = \frac{1}{2}m(v_o^2 - v_{1f}^2)

\Delta K = \frac{1}{2}m(v_o^2 - \frac{49v_o^2}{169})

so fractional loss in energy is given as

f = \frac{\Delta K}{K}

f = \frac{\frac{60}{169}mv_o^2}{\frac{1}{2}mv_o^2}

f = \frac{120}{169}

Part c)

So from above discussion we have the result that energy loss will be more if the collision occurs with animal with more mass

8 0
3 years ago
If you push on the floor with 5 N for 15 seconds, how much work is done?
Maslowich

Answer: It would be 75

Explanation: If your pushing on the floor at a rate of 5 for 15 seconds you would multiply the numbers and get 75

4 0
3 years ago
Read 2 more answers
Match the cloud type with its description. 1. cumulus
Bond [772]

Answers

1. cumulus ⇒ b. look like pieces of cotton in the sky

2. altostratus ⇒ c. resembles an overcast sky; layers of gray or white clouds

3. cirrus ⇒ a. look like wispy feathers high in the sky

4. nimbostratus ⇒ E.dark, thick-layered clouds; rain's coming

5. fog ⇒ d. clouds nearest Earth's surface



7 0
3 years ago
Read 2 more answers
Compute the voltage drop along a 26-m length of household no. 14 copper wire (used in 15-A circuits). The wire has diameter 1.62
zepelin [54]

Answer:

V= 2.7 [v]

Explanation:

The value of the resistance is given by:

R=L*\frac{Rho}{A}\\\\where:\\R=resistance\\L=Lenght\\Rho=Resistivity\\A=Transversal -Area

so:

R=26m*\frac{(1.68*10^{-8}ohm*m)}{\pi *(\frac{1.628*10^{-3}m}{2})^2}\\R=0.21 Ohm

We can calulate the voltage dropped using the Ohm's law:

V=I*R\\V=13A*0.21Ohm=2.7V

8 0
3 years ago
Other questions:
  • Violet light (λ = 400 nm) passing through a diffraction grating for which the slit spacing is 6.0 μm forms a pattern on a screen
    7·1 answer
  • I Need help please with this question..
    15·1 answer
  • How to solve god initial speed
    10·1 answer
  • A 90dB sound wave strikes an eardrum whose area is 5.0×10^-5m^2. How much energy is absorbed by the eardrum per second
    6·1 answer
  • As an object moves along the x axis, many measurements are made of its position, enough to generate a smooth, accurate graph of
    12·2 answers
  • Lillian (mass 40.0 kg) standing at rest on slippery ice catches her leaping dog (mass 15 kg) moving horizontally at 3.0 m/s. Wha
    10·1 answer
  • What is WgWgW_g, the work done on the block by the force of gravity as the block moves a distance LLL up the incline? Express th
    9·1 answer
  • Why do you think Kool Aid comes in packets that has a very finely ground powder (finely ground means very small particles)?
    6·1 answer
  • Isla’s change in velocity is 30 m/s, and Hazel has the same change in velocity. Which best explains why they would have differen
    5·1 answer
  • Sugar crystals enter a dryer at the rate of 1000 kg h-1 and at 20% w.b. moisture content. They leave the dryer at 3% w.b. moistu
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!