1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denpristay [2]
2 years ago
9

Two boxes sit side by side on a smooth horizontal surface. The lighter box 5.2 kg, the heavier box has a mass of 7.4kg (a) find

the contact force between these boxes when a horizontal force of 5.0 N is applied to the light box. (Hint: you need to calculate acceleration first)
Physics
1 answer:
Paladinen [302]2 years ago
8 0

OK.  So you're pushing on the small box, and on the other side of it, the small
box is pushing on the big box. So you're actually pushing both of them.

-- The total mass that you're pushing is (5.2 + 7.4) = 12.6 kg.

-- You're pushing it with 5.0N of force.

-- Acceleration of the whole thing = (force)/(mass) = 5/12.6 = <em>0.397 m/s²</em> (rounded)

-- Both boxes accelerate at the same rate. So the box farther away from you ...
the big one, with 7.4 kg of mass, accelerates at the same rate.

The force on it to make it accelerate is (mass) x (acceleration) =

                                                              (7.4 kg) x (5/12.6 m/s²) =  <em>2.936 N.</em>

The only force on the big box comes from the small box, pushing it from behind. 
So that same  <em>2.936N</em>  must be the contact force between the boxes.

You might be interested in
HELP!!! ASP EASY QUESTION! WILL GIVE BRAINEST IF U ANSWER!
Harlamova29_29 [7]
I believe the answer is Anther.
The Anther produces the pollen
5 0
3 years ago
Zero, a hypothetical planet, has a mass of 5.3 x 1023 kg, a radius of 3.3 x 106 m, and no atmosphere. A 10 kg space probe is to
Andrej [43]

(a) 3.1\cdot 10^7 J

The total mechanical energy of the space probe must be constant, so we can write:

E_i = E_f\\K_i + U_i = K_f + U_f (1)

where

K_i is the kinetic energy at the surface, when the probe is launched

U_i is the gravitational potential energy at the surface

K_f is the final kinetic energy of the probe

U_i is the final gravitational potential energy

Here we have

K_i = 5.0 \cdot 10^7 J

at the surface, R=3.3\cdot 10^6 m (radius of the planet), M=5.3\cdot 10^{23}kg (mass of the planet) and m=10 kg (mass of the probe), so the initial gravitational potential energy is

U_i=-G\frac{mM}{R}=-(6.67\cdot 10^{-11})\frac{(10 kg)(5.3\cdot 10^{23}kg)}{3.3\cdot 10^6 m}=-1.07\cdot 10^8 J

At the final point, the distance of the probe from the centre of Zero is

r=4.0\cdot 10^6 m

so the final potential energy is

U_f=-G\frac{mM}{r}=-(6.67\cdot 10^{-11})\frac{(10 kg)(5.3\cdot 10^{23}kg)}{4.0\cdot 10^6 m}=-8.8\cdot 10^7 J

So now we can use eq.(1) to find the final kinetic energy:

K_f = K_i + U_i - U_f = 5.0\cdot 10^7 J+(-1.07\cdot 10^8 J)-(-8.8\cdot 10^7 J)=3.1\cdot 10^7 J

(b) 6.3\cdot 10^7 J

The probe reaches a maximum distance of

r=8.0\cdot 10^6 m

which means that at that point, the kinetic energy is zero: (the probe speed has become zero):

K_f = 0

At that point, the gravitational potential energy is

U_f=-G\frac{mM}{r}=-(6.67\cdot 10^{-11})\frac{(10 kg)(5.3\cdot 10^{23}kg)}{8.0\cdot 10^6 m}=-4.4\cdot 10^7 J

So now we can use eq.(1) to find the initial kinetic energy:

K_i = K_f + U_f - U_i = 0+(-4.4\cdot 10^7 J)-(-1.07\cdot 10^8 J)=6.3\cdot 10^7 J

3 0
2 years ago
What happens when an object is dropped?
katrin2010 [14]
When an object is dropped, tossed, or kicked, as long as it is not laying on the ground, it accelerates downward, because of the force of gravity acting on it.
3 0
3 years ago
Match each type of wave to the way it moves.
OverLord2011 [107]

Answer:

Transverse wave- Back and forth at right angles to the direction of the wave arrow.

longitudinal wave- bask and forth in the direction of the motion of the motion of the wave.

electromagnetic wave- two alternating waves moving at right angles to each other.

Explanation:

In a longitudinal wave, the particles vibrate at right angles in reference to the wave motion.

In a transverse wave, the particles vibrate parallel to the wave motion

Electromagnetic waves occur as a result of the interaction between two  waves and are normally transverse in nature.  

8 0
3 years ago
một ngẫu lực có momen không đổi M=10KNm tác dugj lên tang của một trục tời xem là đĩa tròn đồng chất có bán kính R =30cm và có t
Amanda [17]
Can you speak English pls?
5 0
3 years ago
Other questions:
  • A 1000-kg aircraft going 25 m/s collides with a 1500-kg aircraft that is parked. They stick
    5·1 answer
  • What term is used to describe the hot ash, gases, and materials being erupted at speeds of up to 400 mph?
    11·1 answer
  • a 3.46 kg box is sitting at rest on a flat floor. a.) what is the weight of the box. b.) what is the normal force on the box
    9·1 answer
  • Which of the following is not a use for a weather radar?
    8·2 answers
  • Which type of wave does the illustration depict?
    11·2 answers
  • A sealed balloon is filled with 1.00 L of helium at 23°C and 1.00 atm. The balloon rises to a point in the atmosphere where the
    7·1 answer
  • In a standard tensile test a steel rod of 22-mm diameter is subjected to a tension force of 75kN. Knowing that v = 0.30 and E =
    13·2 answers
  • Guys pls thi is my last pointa just answer this!!!!(WILL GIVE BRAINLY) A student takes apart a wooden box. What can they build w
    15·1 answer
  • If the mass of the cement is 15 000 kg, calculate the density of this cement sample in kgm-3
    8·1 answer
  • USE INTERNET TO ANSWER THE FOLLOWIN 6. Research about the causes of the following: (use diagrams were necessary
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!