Answer: The correct answer is (b) F1 does more work than F2.
The block is moving horizontally the direction is opposite to direction of motion. The two forces applied are F1 and F2.F1 is applied horizontally so its horizontal component is F1cos0 = F1
While F2 is at angle so horizontal component of F2 is F2cos(theta) and as we know cos is a decreasing in 0 to 90 degree. Therefore F1 does more work than F2.
Work is defined as the product of the magnitude of a force and the displacement of the object it is acting upon. In this case, the forces F1 and F2 are acting on the box, causing it to move across the floor. To calculate the work done by each force, we need to calculate the magnitude of the force and the displacement of the box.
The magnitude of F1 is given in the diagram, and it is 2 N. The magnitude of F2 is also given, and it is 4 N. For the displacement of the box, we will assume it is 1 m.
Now we can use the formula W = F x d to calculate the work done by each force.
For F1: W1 = 2 N x 1 m = 2 J
For F2: W2 = 4 N x 1 m = 4 J
Since F1 does 2 J of work, and F2 does 4 J of work, F1 does more work than F2 does. Therefore, the correct answer is (b) F1 does more work than F2 does.
Find More: https://brainly.in/question/17901995?referrer=searchResults
#SPJ4
After one meter, 3.4% of the light is gone ... either soaked up in the fiber
material or escaped from it. So only (100 - 3.4) = 96.6% of the light
remains, to go on to the next meter.
After the second meter, 96.6% of what entered it emerges from it, and
that's 96.6% of 96.6% of the original signal that entered the beginning
of the fiber.
==> After 2 meters, the intensity has dwindled to (0.966)² of its original level.
It's that exponent of ' 2 ' that corresponds to the number of meters that the light
has traveled through.
==> After 'x' meters of fiber, the remaininglight intensity is (0.966) ^x-power
of its original value.
If you shine 1,500 lumens into the front of the fiber, then after 'x' meters of
cable, you'll have
<em>(1,500) · (0.966)^x</em>
lumens of light remaining.
=========================================
The genius engineers in the fiber design industry would not handle it this way.
When they look up the 'attenuation' of the cable in the fiber manufacturer's
catalog, it would say "15dB per 100 meters".
What does that mean ? Break it down: 15dB in 100 meters is <u>0.15dB per meter</u>.
Now, watch this:
Up at the top, the problem told us that the loss in 1 meter is 3.4% . We applied
super high mathematics to that and calculated that 96.6% remains, or 0.966.
Look at this ==> 10 log(0.966) = <em><u>-0.15</u> </em> <== loss per meter, in dB .
Armed with this information, the engineer ... calculating the loss in 'x' meters of
fiber cable, doesn't have to mess with raising numbers to powers. All he has to
do is say ...
-- 0.15 dB loss per meter
-- 'x' meters of cable
-- 0.15x dB of loss.
If 'x' happens to be, say, 72 meters, then the loss is (72) (0.15) = 10.8 dB .
and 10 ^ (-10.8/10) = 10 ^ -1.08 = 0.083 = <em>8.3%</em> <== <u>That's</u> how much light
he'll have left after 72 meters, and all he had to do was a simple multiplication.
Sorry. Didn't mean to ramble on. But I do stuff like this every day.
Answer:
The acceleration of the refrigerator is 
Explanation:
The expression of the equation of the net force acting on the refrigerator is as follows;
F-f= ma
Here, F is the applied force, f is the force of friction, m is the mass and a is the acceleration.
It is given in the problem that you're having a hard time pushing a refrigerator having mass 355 kg across the kitchen floor. The force of your own push is 993 N. The force of friction opposing your own push is 973 N.
Put F= 993, f= 973 N and m = 355 kg in the above expression of the equation to calculate the acceleration of the refrigerator.
993 - 973 = (355)a
20 = 355 a

Therefore, the acceleration of the refrigerator is
.
Explanation:
Catastrophism is a geological concept or ideology that was formerly in place. It suggests that the earth crust has evolved through only drastic and violent geological events.
Uniformitarianism suggests that the earth carefully evolved over a period of time and that the processes that are occurring today have occurred in times past.
- Catastrophism presents a drastic and rapid evolution of the crust.
- Uniformitarianism takes a gradual approach to events and suggests that we can use the present to unravel the past.