<span>Your flexibility decreases. But if you exercise or stretch a few times a week you can slow down the process </span>
<span>Which electromagnetic waves have the shortest wavelengths and highest frequencies?
Gamma rays </span>
Answer:
Explanation:
We shall solve this problem on the basis of pinciple that water is incompressible so volume of flow will be equal at every point .
rate of volume flow of one stream
= cross sectional area x velocity
= 8.4 x 3.5 x 2.2 = 64.68 m³ /s
rate of volume flow of other stream
= 6.6 x 3.6 x 2.7
= 64.15 m³ /s
rate of volume flow of rive , if d be its depth
= 11.2 x d x 2.8
= 31.36 d
volume flow of river = Total of volume flow rate of two streams
31.36 d = 64.15 + 64.68
31.36 d = 128.83
d = 4.10 m /s .
Answer:
The work done is 5136.88 J.
Explanation:
Given that,
n = 1.90 mol
Temperature = 296 K
If the initial volume is V then the final volume will be V/3.
We need to calculate the work done
Using formula of work done

Put the value into the formula



The Work done on the system.
Hence, The work done is 5136.88 J.
Answer:
As the wavelength of an electromagnetic wave _decrease__ the frequency of the wave _increase_______.
Explanation:
What is the relationship between frequency and wavelength?
Wavelength and frequency of light are closely related. The higher the frequency, the shorter the wavelength. Because all light waves move through a vacuum at the same speed, the number of wave crests passing by a given point in one second depends on the wavelength.
That number, also known as the frequency, will be larger for a short-wavelength wave than for a long-wavelength wave. The equation that relates wavelength and frequency is:
V= fλ
where v= velocity
f= frequency
λ = wavelength
⇒ f = v/λ
also f ∝ 1/λ
For electromagnetic radiation, the speed is equal to the speed of light, c, and the equation becomes:
C= fλ
where c= Speed of light
f= frequency
λ = wavelength
⇒ f = v/λ
also f ∝ 1/λ