Answer:
Vertical
Explanation:
When the circle is horizontal, the tension in the string is equal to the centripetal force. When the circle is vertical, the tension is greater since it is equal to the centripetal force plus the weight of the stone. Therefore, the string is more likely to break when the circle is vertical
Answer:
Electric flux 
Explanation:
Given that,
Electric field acting on the circular area, 
We need to find the electric flux through a circular area of radius 1.83 m that lies in the xy-plane. It lies in xy plane, such that the area vector point in z direction. The electric flux is given by :


Using dot product properties, we get the value of electric flux as :



So, the electric flux through a circular area is
. Hence, this is the required solution.
You skipped over a number in the question, and you didn't tell me what my average speed is. Lucky for you, my average speed has NO EFFECT on the answer to the question.
When you calculate velocity, you only use the straight-line distance between the start-point and the end-point. It doesn't matter what route the thing took to get there, or how much ground it actually covered.
If I travel in a circle and stop at the same point I started from, then the size of the circle doesn't matter, and neither does my speed. The distance between my start-point and my end-point is zero, and my average velocity is zero.