Answer:
(4,3,2)
Step-by-step explanation:
We can solve this via matrices, so the equations given can be written in matrix form as:
![\left[\begin{array}{cccc}3&2&1&20\\1&-4&-1&-10\\2&1&2&15\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D3%262%261%2620%5C%5C1%26-4%26-1%26-10%5C%5C2%261%262%2615%5Cend%7Barray%7D%5Cright%5D)
Now I will shift rows to make my pivot point (top left) a 1 and so:
![\left[\begin{array}{cccc}1&-4&-1&-10\\2&1&2&15\\3&2&1&20\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-4%26-1%26-10%5C%5C2%261%262%2615%5C%5C3%262%261%2620%5Cend%7Barray%7D%5Cright%5D)
Next I will come up with algorithms that can cancel out numbers where R1 means row 1, R2 means row 2 and R3 means row three therefore,
-2R1+R2=R2 , -3R1+R3=R3
![\left[\begin{array}{cccc}1&-4&-1&-10\\0&9&4&35\\0&14&4&50\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-4%26-1%26-10%5C%5C0%269%264%2635%5C%5C0%2614%264%2650%5Cend%7Barray%7D%5Cright%5D)

![\left[\begin{array}{cccc}1&-4&-1&-10\\0&1&\frac{4}{9}&\frac{35}{9}\\0&14&4&50\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-4%26-1%26-10%5C%5C0%261%26%5Cfrac%7B4%7D%7B9%7D%26%5Cfrac%7B35%7D%7B9%7D%5C%5C0%2614%264%2650%5Cend%7Barray%7D%5Cright%5D)
4R2+R1=R1 , -14R2+R3=R3
![\left[\begin{array}{cccc}1&0&\frac{7}{9}&\frac{50}{9}\\0&1&\frac{4}{9}&\frac{35}{9}\\0&0&-\frac{20}{9}&-\frac{40}{9}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26%5Cfrac%7B7%7D%7B9%7D%26%5Cfrac%7B50%7D%7B9%7D%5C%5C0%261%26%5Cfrac%7B4%7D%7B9%7D%26%5Cfrac%7B35%7D%7B9%7D%5C%5C0%260%26-%5Cfrac%7B20%7D%7B9%7D%26-%5Cfrac%7B40%7D%7B9%7D%5Cend%7Barray%7D%5Cright%5D)

![\left[\begin{array}{cccc}1&0&\frac{7}{9}&\frac{50}{9}\\0&1&\frac{4}{9}&\frac{35}{9}\\0&0&1&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26%5Cfrac%7B7%7D%7B9%7D%26%5Cfrac%7B50%7D%7B9%7D%5C%5C0%261%26%5Cfrac%7B4%7D%7B9%7D%26%5Cfrac%7B35%7D%7B9%7D%5C%5C0%260%261%262%5Cend%7Barray%7D%5Cright%5D)
, 
![\left[\begin{array}{cccc}1&0&0&4\\0&1&0&3\\0&0&1&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%260%264%5C%5C0%261%260%263%5C%5C0%260%261%262%5Cend%7Barray%7D%5Cright%5D)
Therefore the solution to the system of equations are (x,y,z) = (4,3,2)
Note: If answer choices are given, plug them in and see if you get what is "equal to". Meaning plug in 4 for x, 3 for y and 2 for z in the first equation and you should get 20, second equation -10 and third 15.
Answer: Transitive property of congruence
Each of them need to work 105 minutes more in order to have packed the same number of boxes.
<u><em>Explanation</em></u>
Suppose, they need to work for
minutes more in order to have packed the same number of boxes.
Selma packs one box in 5 minutes and Trudy packs one box in 7 minutes.
So, the number of boxes packed by Selma in that
minutes
and the number of boxes packed by Trudy in
minutes 
Given that, Selma and Trudy have already packed 12 and 18 boxes.
Now if <u>each of them packed the same number of boxes</u>, then the equation will be......

So, each of them need to work 105 minutes more in order to have packed the same number of boxes.
Answer:
<em>y: (0 , 2.5)</em>
<em>x: (3.5 , 0)</em>
Step-by-step explanation:
Y-intercept : (0 , 2.5)
X-intercept: (3.5 , 0)
When looking at the intersection on the y-axis, the x-coordinate will be 0. And when looking at the intersection on the x-axis, the y-coordinate will be 0.