Sounds to me as tho you are to graph 3x+5y<10, and that after doing so you are to restrict the shaded answer area created by the "constraint" inequality x≤y+1. OR x-1 ≤ y OR y≥x-1. If this is the correct assumption, then please finish the last part of y our problem statement by typing {x-y<=1}.
First graph 3x+5y = 10, using a dashed line instead of a solid line.
x-intercept will be 10/3 and y-intercept will be 2. Now, because of the < symbol, shade the coordinate plane BELOW this dashed line.
Next, graph y=x-1. y-intercept is -1 and x intercept is 1. Shade the graph area ABOVE this solid line.
The 2 lines intersect at (1.875, 0.875). To the LEFT of this point is a wedge-shaped area bounded by the 2 lines mentioned. That wedge-shaped area is the solution set for this problem.
Step-by-step explanation: The mean is a more accurate answer because it’s finding the average of the answers where the median is just the center number of wide ranges numbers
73+107 = 180. When the smaller of the two angles is 73 all of the smaller angles are also going to be 73 and since the angles MTS and STN are bigger angles they both have to be 107