Answer: I2 is the Oxidant; while the 2S2O3(-2) is the reductant.
Explanation:
An Oxidant is any substance that oxidizes, or receives electrons from, another; in so doing, it becomes reduced in oxidation number.
A Reductant thus exactly the opposite.
Note that the equation provided shows that Iodine (I2) received an electron to become NEGATIVELY CHARGED:
I2 --> 2I-.
The oxidation number reduced from 0 to -1.
In contrast, the oxidation number of 2S2O3(-2) increases from -4 to -2.
Thus, I2 is the Oxidant; while the 2S2O3(-2) is the reductant.
I really don’t know but
Phosphorus pentoxide is a white solid which does not have any distinct odour. The chemical formula of this compound is P4O10. However, it is named after its empirical formula, which is P2O5. The molar mass of phosphorus pentoxide corresponds to 283.9 g/mol.
The initial mass of sodium hydroxide is 3.3 g (answer C)
<u><em>calculation</em></u>
Step 1 : find the moles of iron (ii) hydroxide ( Fe(OH)₂
moles = mass÷ molar mass
from periodic table the molar mass of Fe(OH)₂ = 56 + [16 +1]2 = 90 g/mol
moles is therefore = 3.70 g÷ 90 g/mol = 0.041 moles
Step 2: use the mole ratio to calculate the moles of sodium hydroxide (NaOH)
from given equation NaOH : Fe(OH)₂ is 2 :1
therefore the moles of NaOH = 0.041 x 2 = 0.082 moles
Step 3: find mass of NaOH
mass = moles x molar mass
from the periodic table the molar mass of NaOH = 23 +16 +1 = 40 g/mol
mass = 0.082 moles x 40 g/mol = 3.3 g ( answer C)
To determine the shapes of molecules, we must become acquainted with the Lewis electron dot structure. Although the Lewis theory does not determine the shapes of molecules, it is the first step in predicting shapes of molecules. The Lewis structure helps us identify the bond pairs and the lone pairs.
Please mark BRAINLIEST.