Answer:
∑ τ =0, L₀ = 
Explanation:
In a circular turning movement, when the arms are extended and then contracted in two possibilities:
- They are lowered the force of gravity is what pulls them, the tension of the muscle becomes zero to allow this movement.
In this movement the force is vertical(gravity) and the movement of the center of mass of each arm is vertical, so that the work is the weight value of the arm by the distance traveled by the center of mass.
- Another possibility is that the arms have stuck to the body, in this case the person's muscles perform the force, this force is horizontal and the displacement is the horizontal of the center of mass of the arms from the extended position to the contracted
In these movements the torque of the external force is equal for each arm, but in the opposite direction, so they are canceled where a net torque of zero, this causes the angular momentum to be preserved, which changes is the moment of inertia of the system and therefore you must also change the angular velocity to keep your product constant
∑ τ =0
L₀ = 
I₀ w₀ = I w
Answer:
B
Explanation:
Adding a dopant is correct on edge.
Answer:
Explanation:
Given parameters:
Weight of object = 49N
Force applied = 12N
Unknown:
Acceleration of object = ?
Solution:
The acceleration of the object is found by dividing the force by the weight;
Acceleration =
= 0.25m/s²
A its Stratosphere, Sorry I didn't see your answer, its bilogy I think not physics.. :)
Answer:
The range of powers is 
Explanation:
From the question we are told that
The far point of the left eye is 
The near point of the left eye is 
The near point with the glasses on is 
From these parameter we can see that with the glass on that for near point the
Object distance would be 
Image distance would be 
To obtain the focal length we would apply the lens formula which is mathematically represented as

substituting values


converting to meters


Generally the power of the lens is mathematically represented as

Substituting values


From these parameter we can see that with the glass on that for far point the
Object distance would be 
Image distance would be 
To obtain the focal length of the lens we would apply the lens formula which is mathematically represented as

substituting values


converting to meters

Generally the power of the lens is mathematically represented as

Substituting values


This implies that the range of powers of the lens in his glass is
