Answer:
The water is flowing at the rate of 28.04 m/s.
Explanation:
Given;
Height of sea water, z₁ = 10.5 m
gauge pressure,
= 2.95 atm
Atmospheric pressure,
= 101325 Pa
To determine the speed of the water, apply Bernoulli's equation;

where;
P₁ = 
P₂ = 
v₁ = 0
z₂ = 0
Substitute in these values and the Bernoulli's equation will reduce to;

where;
is the density of seawater = 1030 kg/m³

Therefore, the water is flowing at the rate of 28.04 m/s.
Answer:
Woke done, W = 4156.92 Joules
Explanation:
The work done by the force can be calculated as :


is the angle between force and the displacement
It is assumed to find the work done for the given parameters i.e.
Force, F = 30 N
Distance travelled, s = 160 m
Angle between force and displacement, 
Work done is given by :


W = 4156.92 Joules
So, the work done by the object is 4156.92 Joules. Hence, this is the required solution.
Hello! mark me brainliest please
The average speed of an object is defined as the distance traveled divided by the time elapsed. Velocity is a vector quantity, and average velocity can be defined as the displacement divided by the time.
The correct answer is C) towards the center of the circle.
Although the object is moving at a constant speed it is constantly accelerating due to the constant change in direction as it describes the circular path. This causes a constant change in velocity as velocity is a vector quantity.
For the object to maintain the circular path there has to be centripetal force acting on the object and this centripetal force is directed towards the center of the circle.
Answer:
I'm pretty sure it's the third one where velocity goes from positive to negative
Explanation:
the positive velocity is before the object hits the ground and the negative is after