Answer:
Explanation: n=m/M(molar mass)
n=24.3 grams/(16+2x1.008)grams/moles(molar mass of H2O)
n=24.3grams/18.016grams/moles
n=1.35moles
Explanation:
The given data is as follows.
Boiling point of water (
= (100 + 273) K = 323 K,
Boiling point of solution (
= (101.24 + 273) K = 374.24 K
Hence, change in temperature will be calculated as follows.

= 374.24 K - 323 K
= 1.24 K
As molality is defined as the moles of solute present in kg of solvent.
Molality = 
Let molar mass of the solute is x grams.
Therefore, Molality = 
m =
= 
As, 

x = 
= 1321.29 g
This means that the molar mass of the given compound is 1321.29 g.
It is given that molecular formula is
.
As, its empirical formula is
and mass is 30 g/mol. Hence, calculate the value of n as follows.
n = 
= 
= 44 mol
Thus, we can conclude that the formula of given material is
.
Answer: 4 valence electrons, Silicon, Si, 14, 28.0855, 14
Explanation:
The empirical formula of the following compounds 0.903 g of phosphorus combined with 6.99 g of bromine.
<h3>What is empirical formula?</h3>
The simplest whole number ratio of atoms in a compound is the empirical formula of a chemical compound in chemistry. Sulfur monoxide's empirical formula, SO, and disulfur dioxide's empirical formula, S2O2, are two straightforward examples of this idea. As a result, both the sulfur and oxygen compounds sulfur monoxide and disulfur dioxide have the same empirical formula.
<h3>
How to find the empirical formula?</h3>
Convert the given masses of phosphorus and bromine into moles by multiplying the reciprocal of their molar masses. The molar masses of phosphorus and bromine are 30.97 and 79.90 g/mol, respectively.
Moles phosphorus = 0.903 g phosphorus
= 0.0293 mol
Moles bromine 6.99 g bromine
=0.0875 mol
The preliminary formula for compound is P0.0293Bro.0875. Divide all the subscripts by the subscript with the smallest value which is 0.0293. The empirical formula is P1.00Br2.99 ≈ P₁Br3 or PBr3
To learn more about empirical formula visit:
brainly.com/question/14044066
#SPJ4