Answer:
The correct answer is "The coffee in the jug has more thermal energy than the coffee in the cup".
Explanation:
First I had to look for the problem to know the possible answers.
In this case, the coffee jug has a large amount of coffee at the same temperature. If we analyze that the decanter and the coffee are at the same temperature, we have a homogeneous thermal system. The cup is at room temperature, so by pouring coffee into it, the temperature of the coffee decreases to balance with the temperature of the cup. At this moment, the temperature of the cup-cafe system is lower than the jug-cafe system.
Thermal energy is the part of the internal energy of an equilibrated thermodynamic system that is proportional to its absolute temperature and increases or decreases by energy transfer.
In this way, we can ensure that the thermal energy of the cup-cafe system is lower than that of the jug-cafe system.
Have a nice day!
Part B question 1 Answer: C
that’s the on that makes most sense
I believe it's better for it to be more abundant because it's better to have more then less. Take water as an example. Water is an important factor to our survival and if we didn't have enough of that we would be in trouble. Or if we needed food but there wasn't enough more people would be dying from starvation. It's better to have a little more than a little less.
Below are the choices that can be found from other sources:
<span>A) elements
B) ions
C) molecules
D) neutrons
the answer is ions.
</span>A Star<span> and hence our Sun, is an almost entirely ionized ball of </span>plasma<span>, consisting of electrons and ions, in which there is hardly any gas (neutral atoms). The movement of the </span>plasma<span> produces strong magnetic fields and corresponding electric currents.</span>
Answer:
cfcl3
Explanation:
When the cfcl3 in the atmosphere is hit by UV rays from the sun, it decomposes to Cl atoms. These Cl atoms then react with the ozone producing O2 and ClO. The ClO bombard with O atoms splitting the ClO up and the free Cl atom again bonds to another O3 molecule hence reducing it. One ClO can reduce several O3 molecules (up to 100,000) creating an ozone hole.
2Cl + O3 → 2ClO + 2O2
2ClO + 2O → 2Cl + 2O2