Answer:
Option B

Explanation:
Given information
Radius of container, r=12cm=12/100=0.12m
Angular velocity= 2 rev/s, converted to rad/s we multiply by 2π
Angular velocity, 
We know that speed, 
Centripetal acceleration,
and substituting
we obtain that

Substituting \omega for 12.56637061 and r for 0.12

Rounded off, 
Answer:
Explanation:
The force of friction equals the sine component of the force due to gravity
The normal force acting on the object is 500 N in the upward direction
<u>Explanation:</u>
As George is applying a downward force, the normal force will be in the upward direction. The normal force will be exerted due to the acceleration due to gravity exerted on the object.
So, as per Newton's second law, the normal force acting on the object can be measured by the product of mass of the object and the acceleration due to gravity acting on the object.
But as the acceleration due to gravity is a downward acting acceleration and the normal force is a upward acting force, so the acceleration will be having a negative sign in the formula.

Here, acceleration due to gravity g = -10 m/s² and mass is given as 50 kg, then
Normal force = 50 × (-10) = -500 N
So, the normal force acting on the object is 500 N in the upward direction.
The velocity of the ball and the man is 0.259 m/s
Explanation:
We can solve this problem by using the law of conservation of momentum. In fact, in an isolated system, the total momentum before and after the collision must be conserved. Therefore, for the ball-man system, we can write:
where:
is the mass of the ball
is the initial velocity of the ball
is the mass of the man
is the initial velocity of the man
is the final velocity of the man and the ball after the collision
Re-arranging the equation and substituting the values, we find the final velocity:

So, the man and the ball slides on the ice at 0.259 m/s.
Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly