The time taken for the first p-wave to reach the same seismic station is approximately 13 minutes.
<h3>Time of travel of the P-wave</h3>
In rock, S waves generally travel about 60% the speed of P waves, and the S wave always arrives after the P wave.
<h3>Relationship between speed and time</h3>
v ∝ 1/t
v₁t₁ = v₂t₂
t₁/t₂ = v₂/v₁
t₁/t₂ = 0.6v₁/v₁
t₁/t₂ = 0.6
t₁ = 0.6t₂
t₁ = 0.6 x 22 mins
t₁ = 13.2 mins
Thus, the time taken for the first p-wave to reach the same seismic station is approximately 13 minutes.
Learn more about P-waves here: brainly.com/question/2552909
#SPJ1
Answer:
L = 3.51
Explanation:
Pendulum equation is T = 2pi
T = 1.5 and we are solving for L
1.5=2
square both sides to get 2.25 = 2
multiply both sides by 9.81 then divide by 2 and 3.14 as a substitue for pi. The answer should be about 3.51 in length
L = 3.51
If this helps, mark me brainliest pls
Answer:
14 x 0.27 = 3.78 is your answer
Explanation:
the question is asking for the weight of the object so you multiply and get 3.79
(1) acceleration, a = 4 m/
(2) acceleration of 10 N,
= 1 m/
and acceleration of 30 N,
= 3 m/
Explanation:
- Here, the acceleration of the object could be found using the equation derived in the second law of motion. The equation is given as, F = ma where m is the acceleration of the object, m is the mass of the object and F is the applied on the object.
- Let
be the acceleration for force 10 N, to find acceleration rearrange the equation to a =
. When we substitute 10 N force and 10 kg mass of the box in the equation. We will get
= 1 m/
- Let
be the acceleration for force 30 N, to find acceleration rearrange the equation to F =
. When we substitute 30 N force and 10 kg mass of the box in the equation. We will get
= 3 m/
- To find the combined, just add the force and substitute in the above equation. Hence, a = 4 m/
