Answer: i would say D or the last one.
Explanation: According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants. The law of conservation of mass is useful for a number of calculations and can be used to solve for unknown masses, such the amount of gas consumed or produced during a reaction.
Hope this helps :) Can u plz mark me branliest
The correct answer of the given question above would be option D. None of the above. When a solid has a low melting point, it is most likely a simple molecular substance. When it is ionic, covalent or metallic, it is already considered as a solid with a high melting point.
Answer:
The amount of energy released from the combustion of 2 moles of methae is 1,605.08 kJ/mol
Explanation:
The chemical reaction of the combustion of methane is given as follows;
CH₄ (g) + 2O₂ (g) → CO₂ (g) + 2H₂O (g)
Hence, 1 mole of methane combines with 2 moles of oxygen gas to form 1 mole of carbon dioxide and 2 moles of water vapor
Where:
CH₄ (g): Hf = -74.6 kJ/mol
CO₂ (g): Hf = -393.5 kJ/mol
H₂O (g): Hf = -241.82 kJ/mol
Therefore, the combustion of 1 mole of methane releases;
-393.5 kJ/mol × 1 + 241.82 kJ/mol × 2 + 74.6 kJ/mol = -802.54 kJ/mol
Hence the combustion of 2 moles of methae will rellease;
2 × -802.54 kJ/mol or 1,605.08 kJ/mol.
Answer:
12 moles of F₂
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
N₂ + 3F₂ —> 2NF₃
From the balanced equation above,
3 moles of F₂ reacted to produce 2 moles of NF₃.
Finally, we shall determine the number of mole of F₂ needed to produce 8 moles of NF₃. This can be obtained as illustrated below:
From the balanced equation above,
3 moles of F₂ reacted to produce 2 moles of NF₃.
Therefore, Xmol of F₂ will react to produce 8 moles of NF₃ i.e
Xmol of F₂ = (3 × 8)/2
Xmol of F₂ = 12 moles
Thus, 12 moles of F₂ is needed for the reaction.
Answer:
Carbon Dioxide = CO2
Explanation:
The synthesis of Malachite is seen in the chemical formula:
CuSO 4 . 5H2O(aq) + 2NaCO3(aq) --> CuCO 3 Cu(OH) 2 (s) + 2Na 2 SO 4 (aq) + CO 2 (g) + 9H 2 O(l)
The bubbles mentioned in the question hints that our interest is the compounds in their gseous phase (g).
Upon examining the chemical equation, only CO2 is in the gaseous state and hence the only one that can be formed as bubbles,