Answer:
Explanation:
Well, obviously a molecule with polar bonds can be polar in itself. It's like saying I am an atheltic person who can just reach the basketball rim with my head and also I can dunk.
But if the question is how can a molecule that in non-polar have polar bonds, well, its because the polar bonds' dipole cancels each other out. It's like a tight rope. If a person pulls in one direction, it intuitively, the rope would go in that direction. However, if a person pulls in the other direction with the same amount of force, the rope stays still. This is the same case. Although molecules can have different electronegativities, the pull of electrons in one direction is cancelled out by a pull in the opposite direction, making the net dipole 0.
This is common for main VSERP shaped molecules like linear, trigonal planar, tetrahedral, trigonal bipyramidal, and octahedral.
Answer:
Temporary hardness is a type of water hardness caused by the presence of dissolved bicarbonate minerals (calcium bicarbonate and magnesium bicarbonate). ... However, unlike the permanent hardness caused by sulfate and chloride compounds, this "temporary" hardness can be reduced by boiling the water.
A gauge records the pressure over atmospheric pressure (0kpa on the gauge is actually the atmospheric pressure and a reading of 276kpa is 276kpa over atmospheric pressure). That means that means that to find absolute pressure you just add atmospheric pressure (around 1atm (101kpa)) to 286kpa to get 387kpa. I hope this helps.
The molar mass of copper is 63.55 g/mol. So, you convert grams to moles 127.08/63.55 =1.999 moles copper. Now, 1 mole = 6.022e23 atoms, so multiply # of moles by 6.022e23. 1.999 x 6.022e23= # of atoms of copper.