It seems that you have missed to attach the given map and options for us to answer this question, so I had to look for it. Anyway, here is the answer. The statement that best describes the whether shown by the purple combination of semicircles and triangles on a line on a weather map is a <span>cold front can cause heavy rain, thunder, and lightning. Hope this helps.</span>
The cost of one antacid is 2.325 cents per tablet.
<u>Explanation:</u>
As per the question based on the student analysis we know that,
Total antacid tablets in a bottle = 120
Purchase Price of a bottle = $ 2.79
Cost of 1 antacid tablet
As we know $1 = 100 cent
The cost of 1 antacid tablet =
× 100 cents = 2.325 cents/tablet
.
Thus we came to know that it costs 2.325 cents/tablet
.
Answer:
Thin layer of gases suspended in the air surrounding.
Explanation:
Atmosphere, mark me brainlist.
Answer: option <span>C. the total energy inside the calorimeter will decrease.
</span>
Justification:
The answer is a direct application of the first law of thermodynamic (the law of conservation of energy).
By telling that the t<span>he calorimeter is sealed so that there is no heat exchanged between the contents of the container and the surrounding air, the first law of thermodynamics implies that the total energy inside the calorimeter will not change.
</span>
<span>That statement, without adding any more is enough justification.
</span>
Regarding, the other statements, you can show they are true:
<span>A.
the thermometer will show an increase in temperature.
</span><span>
</span><span>
</span><span>Since the reaction is exothermic, the heat released will increase the temperature inside the sealed calorimeter,which, of course, is shown by the termometer.
</span><span>
</span><span>
</span><span>
</span><span>B. The potential
energy of the products will be lower than that of the reactants.
</span><span>
</span><span>
</span><span>In any exothermic reaction, the potential energy of the products is lower than that of the reactants, because the heat released is lost by the reactants when they react and transform into the products.
</span><span>
</span><span>
</span><span>D. The water
increases in temperature as the reaction gives off heat</span>.
Sure. The heat cannot leave the sealed calorimeter, but the water inside the calorimeter will absorb that heat: the molecules of water will gain kinetic energy and so its temperature will be increase.