Answer:
5746.0 mL.
Explanation:
We can use the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
If n and P are constant, and have two different values of V and T:
<em>V₁T₂ = V₂T₁</em>
<em></em>
V₁ = 6193.0 mL, T₁ = 62.3°C + 273 = 335.3 K.
V₂ = ??? mL, T₂ = 38.1°C + 273 = 311.1 K.
<em>∴ V₂ = V₁T₂/T₁ </em>= (6193.0 mL)(311.1 K)/(335.3 K) = <em>5746.0 mL.</em>
A fusion reaction takes place between carbon and another element. Neutrons are released, and a different element is formed. The different element is Lighter than helium.
When studying atoms, scientists can ignore <u>the Gravitational</u> force between charged particles that make up the atoms because it is many millions of times smaller than other forces in the atom.
Explanation:
Scientists can ignore the gravitational force because the gravitational force is considered to be negligible as compared to the other forces due to its smaller value.We all know that the gravitational force is directly proportional to the mass of an object which result in a small force value.When the value of this small force is compared to the value of the electrical force between protons and electrons in atoms the we can say that the electrical force is million times stronger than the gravitational force
Thus we can say that scientists can ignore <u>the Gravitational</u> force between charged particles that make up the atoms because it is many millions of times smaller than other forces in the atom.
This problem could be solved through the Graham’s law of
effusion (also known as law of diffusion). This law states that the ratio of
the effusion rate of the first gas and effusion rate of the second gas is
equivalent to the square root of the ratio of its molar mass. Thus the answer
would be 0.1098.