<h3>
Answer:</h3>
The pressure increases by 10% of the original pressure
Thus the new pressure is 1.1 times the original pressure.
<h3>
Explanation:</h3>
We are given;
- Initial temperature as 30°C, but K = °C + 273.15
- Thus, Initial temperature, T1 =303.15 K
- Final temperature, T2 is 333.15 K
We are required to state what happens to the pressure;
- We are going to base our arguments to Pressure law;
- According to pressure law, the pressure of a gas and its temperature are directly proportional at a constant volume
- That is; P α T
- Therefore, at varying pressure and temperature

Assuming the initial pressure, P1 is P
Rearranging the formula;
[tex]P2=\frac{P1T2}{T1}[/tex]


= 1.10 P
The new pressure becomes 1.10P
This means the pressure has increased by 10%
We can conclude that, the new pressure will be 1.1 times the original pressure.
Answer:
I'll give you the graphs that you need to look at:1st order: the graph you need to make is ln[A] vs t. If you get a straight line, the reaction is 1st order and the slope will equal to the rate constant K.2nd order: the graph you need to make is 1/ln[A] vs t. If this graph shows a straight line, the reaction is 2nd order and the slope will equal the rate constant K.
Explanation:
Q = mcΔt, q = energy [J] m = mass (of water) [g]; c = specific heat capacity of water [J g⁻¹ K⁻¹/°C⁻¹]; Δt = change in temperature [K/°C]
Δt = 121 - -24 = 145
q = 39 × 4.18 × 145
q = 23637.9 J
PH (potential of hydrogen) is a numeric scale that is used to show the acidity or basicity of an aqueous solution. It tells how acidic or alkaline a substance is . The pH values ranges from 0 to 14, such that acidic solutions have values between 1 to 6.9 with most acidic having a pH value of 1 and those that are basic have values from 7.1 to 14, with most acidic having a value of 14. Acidic compounds contain replaceable hydrogen ions while basic compounds contain hrdroxyl ions. In this case, a coke has a pH of 3.5 (acidic) which means that it has an excess of hydrogen ions (H+) and would be called an acid.
Answer:
Kc for this reaction is 0.06825
Explanation:
Step 1: Data given
Number of moles formaldehyde CH2O = 0.055 moles
Volume = 500 mL = 0.500 L
At equilibrium, the CH2O(g) concentration = 0.051 mol
Step 2: The balanced equation
CH2O <=> H2 + CO
Step 3: Calculate the initial concentrations
Concentration = moles / volume
[CH2O] = 0.055 moles . 0.500 L
[CH2O] = 0.11 M
[H2] = 0M
[CO] = 0M
Step 4: The concentration at the equilibrium
[CH2O] = 0.11 - X M = 0.051 M
[H2] = XM
[CO] = XM
[CH2O] = 0.11 - X M = 0.051 M
X = 0.11 - 0.051 = 0.059
[H2] = XM = 0.059 M
[CO] = XM = 0.059 M
Step 5: Calculate Kc
Kc = [H2][CO]/[CHO]
Kc = (0.059 * 0.059) / 0.051
Kc = 0.06825
Kc for this reaction is 0.06825