Answer:
0.238 M
Explanation:
A 17.00 mL sample of the dilute solution was found to contain 0.220 M ClO₃⁻(aq). The concentration is an intensive property, so the concentration in the 52.00 mL is also 0.220 M ClO₃⁻(aq). We can find the initial concentration of ClO₃⁻ using the dilution rule.
C₁.V₁ = C₂.V₂
C₁ × 24.00 mL = 0.220 M × 52.00 mL
C₁ = 0.477 M
The concentration of Pb(ClO₃)₂ is:

Answer: Option (c) is the correct answer.
Explanation:
Plants used to prepare food in the presence of sunlight. Therefore, plants uses solar energy to make food.
Due to solar energy various chemical reactions take place in the food.
Thus, we can conclude that chemical energy is stored in our food and this chemical energy start out as light energy from the sun.
Answer:
the electric field at Z = 12 cm is E = 9.68 × 10³ N/C = 9.68 kN/C
Explanation:
Given: radius of disk, R = 2.0 cm = 2 × 10⁻² cm, surface charge density,σ = 6.3 μC/m² = 6.3 × 10⁻⁶ C/m², distance on central axis, z = 12 cm = 12 × 10⁻² cm.
The electric field, E at a point on the central axis of a charged disk is given by E = σ/ε₀(
)
Substituting the values into the equation, it becomes
E = σ/ε₀(
) = 6.3 × 10⁻⁶/8.854 × 10⁻¹²(
) = 7.12 × 10⁵(
) = 7.12 × 10⁵(1 - 0.9864) = 7.12 × 10⁵ × 0.0136 = 0.0968 × 10⁵ = 9.68 × 10³ N/C = 9.68 kN/C
Therefore, the electric field at Z = 12 cm is E = 9.68 × 10³ N/C = 9.68 kN/C
Answer:
Trail Mix
Explanation:
The best description for the snack that Ben is eating would be Trail Mix. This is a very common snack for hikers, hence the name, since it is very healthy and great for taking on hikes since it does not get affected by the sun. This snack was originally called GORP which stands for "good old raisins and peanuts" because the snack originally contained only raisins and peanuts. It has since changed to include various different ingredients such as a variety of nuts, chocolate pieces, dried fruit, cereal etc.
Answer:
D. [NO₂]²/[N₂O₄]
Explanation:
The equilibrium constant expression for a reaction is products over reactants. Since NO₂ has a coefficient of 2, it will become an exponent.
So, it would be:
[NO₂]²/[N₂O₄]
Hope that helps.