(i) We start by calculating the mass of sugar in the solution:
mass of sugar = concentration × solution mass
mass of sugar = 2.5/100 × 500 = 12.5 g
Then now we can calculate the amount of water:
solution mass = mass of sugar + mass of water
mass of water = solution mass - mass of sugar
mass of water = 500 - 12.5 = 487.5 g
(ii) We use the following reasoning:
If 500 g solution contains 12.5 g sugar
Then X g solution contains 75 g sugar
X=(500×75)/12.5 = 3000 g solution
Now to get the amount of solution in liters we use density (we assume that is equal to 1):
Density = mass / volume
Volume = mass / density
Volume = 3000 / 1 = 3000 liters of sugar solution
The variable that is measured as data in an experiment is 1. the dependent variable.
The variables that are held constant in an experiment are 2. the controlled variables.
The variable that is changed by the experimenter is 5. the independent variable.
A count or measurement recorded during an experiment is 4. quantitative data.
Descriptions or observations during an experiment are 3. qualitative data.
D. They all contain carbon as an important part of their structure.
Explanation:
It <em><u>provides an objective, standardized approach to conducting experiments</u></em> and, in doing so, improves their results. By using a standardized approach in their investigations, scientists can feel confident that they will stick to the facts and limit the influence of personal, preconceived notions.
I hope this helps you out!
N₂H₄ + 2H₂O₂ → N₂ + 4H₂O
mol = mass ÷ molar mass
If mass of hydrazine (N₂H₄) = 5.29 g
then mol of hydrazine = 5.29 g ÷ ((14 ×2) + (1 × 4))
= 0.165 mol
mole ratio of hydrazine to Nitogen is 1 : 1
∴ if moles of hydrazine = 0.165 mol
then moles of nitrogen = 0.165 mol
Mass = mol × molar mass
Since mol of nitrogen (N₂) = 0.165
then mass of hydrazine = 0.165 × (14 × 2)
= 4.62 g