Answer:
At 430.34 K the reaction will be at equilibrium, at T > 430.34 the
reaction will be spontaneous, and at T < 430.4K the reaction will not
occur spontaneously.
Explanation:
1) Variables:
G = Gibbs energy
H = enthalpy
S = entropy
2) Formula (definition)
G = H + TS
=> ΔG = ΔH - TΔS
3) conditions
ΔG < 0 => spontaneous reaction
ΔG = 0 => equilibrium
ΔG > 0 non espontaneous reaction
4) Assuming the data given correspond to ΔH and ΔS
ΔG = ΔH - T ΔS = 62.4 kJ/mol + T 0.145 kJ / mol * K
=> T = [ΔH - ΔG] / ΔS
ΔG = 0 => T = [ 62.4 kJ/mol - 0 ] / 0.145 kJ/mol*K = 430.34K
This is, at 430.34 K the reaction will be at equilibrium, at T > 430.34 the reaction will be spontaneous, and at T < 430.4K the reaction will not occur spontaneously.
If your options are among the following:
<span>0.64 M 1.0 M 0.32 M 0.16 M.
Then the correct answer is 0.64 M. I hope this is what you were looking for</span>
Answer:
20.0928.
Explanation:
The average atomic mass is (90 * 19.992 + 10* 21) / 100
= 20.0928.
Answer:
C
Explanation:
the respiratory system and the circulatory system work closely together to deliver oxygen to cells and to get rid of the carbon dioxide the cells produce. The circulatory system picks up oxygen in the lungs and drops it off in the tissues, then performs the reverse service for carbon dioxide.