There is 3.58 He in the balloon.
Answer:
a) Fe(s) + Ni^2+(aq) ----> Fe^2+(aq) + Ni(s)
b) no reaction
c) no reaction
d) 2Mg(s) + 2H2O(l)-----> 2Mg^2+(aq) + O2(g) +4H^+(aq)
e) no reaction
Explanation:
It is important to say here that the ability of a particular chemical specie to displace another chemical specie is dependent on the relative standard reduction potentials of the species involved.
All the reactions stated above are redox reactions. Let us take reaction E as an example. Mg^2+ has a reduction potential of -2.37 V while Cr^3+ has a reduction potential of -0.74V. Since the reduction potential of magnesium is more negative than that of chromium, there is no reaction when a piece of chromium metal is dipped into a solution of Mg^2+.
Similarly, though metals displace hydrogen gas from dilute acids, metals that are less than hydrogen in the reactivity series cannot do that. This explains why there is no reaction when copper and silver are dipped into dilute acid solutions.
Reaction occurs when iron is dipped into a nickel solution because the reduction potential of Fe^2+ is far more negative than that of Ni^2+.
Answer:
Yes
Explanation:
Let's write the reaction as
CV⁺+ OH⁻ ⟶ CVOH
The reaction is first order in [CV⁺] and in [OH⁻], so the rate law is
rate = k[CV⁺][OH⁻]
A bimolecular collision between a crystal violet ion and a hydroxide ion as an elementary step would predict the observed rate law.
However, other plausible mechanisms may predict the same rate law.