Answer:
70 W and 40 w
there are 28 days in a month
Add those 2 together and get 110
then mutlpy by 28
3,080 amount of energy
Answer:
C shake it repeatedly
Explanation:
i think thats the answer if not sorry hope it helps you.
Neutrons are very important in provide stability for an atom. When atoms are created by fusion, neutrons are included in this process. Because protons don't like each other and repel each other that's where neutrons come in.
Answer:
82.28g
Explanation:
Given parameters:
Number of moles of hydrogen gas = 7.26 moles
Unknown:
Amount of ammonia produced = ?
Solution:
We have to write the balanced equation first.
N₂ + 3H₂ → 2NH₃
Now, we work from the known to the unknown;
3 moles of H₂ will produce 2 moles of NH₃
7.26 mole of H₂ will produce
= 4.84 moles of NH₃
Molar mass of NH₃ = 14 + 3(1) = 17g/mol
Mass of NH₃ = number of moles x molar mass = 4.84 x 17 = 82.28g
Answer:
The second experiment (reversible path) does more work
Explanation:
Step 1:
A piston confines 0.200 mol Ne(g) in 1.20L at 25 degree °C
<em>(a) The gas is allowed to expand through an additional 1.20 L against a constant of 1.00atm</em>
<em></em>
Irreversible path: w =-Pex*ΔV
⇒ with Pex = 1.00 atm
⇒ with ΔV = 1.20 L
W = -(1.00 atm) * 1.20 L
W = -1.20L*atm *101.325 J /1 L*atm = -121.59 J
<em>(b) The gas is allowed to expand reversibly and isothermally to the same final volume.</em>
<em></em>
W = -nRTln(Vfinal/Vinitial)
⇒ with n = the number of moles = 0.200
⇒ with R = gas constant = 8.3145 J/K*mol
⇒ with T = 298 Kelvin
⇒ with Vfinal/Vinitial = 2.40/1.20 = 2
W = -(0.200mol) * 8.3145 J/K*mol *298K *ln(2.4/1.2)
W = -343.5 J
The second experiment (reversible path) does more work