Question:
A chemistry student needs of 10 g isopropenylbenzene for an experiment. He has available 120 g of a 42.7% w/w solution of isopropenylbenzene in acetone. Calculate the mass of solution the student should use. If there's not enough solution, press the "No solution" button.
Answer:
The answer to the question is as follows
The mass of solution the student should use is 23.42 g.
Explanation:
To solve the question we note the following
A solution containing 42.7 % w/w of isopropenylbenzene in acetone has 42.7 g of isopropenylbenzene in 100 grams of the solution
Therefore we have 10 g of isopropenylbenzene contained in
100 g * 10 g/ 42.7 g = 23.42 g of solution
Available solution = 120 g
Therefore the quantity to used from the available solution = 23.42 g of the isopropenylbenzene in acetone solution.
Can you please tell me what the procedures are
Answer:
66.2 % of O
Explanation:
Our compound is the lithium nitrite.
LiNO₂
This salt is ionic and can be dissociated: LiNO₂ → Li⁺ + NO₂⁻
We determine the molar mass:
molar mass of Li + 3 . molar mass of N + 6 . molar mass of O
6.94 g/mol + 3. 14 g/mol + 6 . 16 g/mol = 144.94 g/mol
The mass of oxygen contained in 1 mol of lithium nitrite is:
6 . 16 g/mol = 96 g
So the percentage of oxygen present is:
(96 g / 144.94 g) . 100 = 66.2 %
Since the substance absorbs heat, it is expected that the temperature will rise. The formula for the internal energy of a substance is given by the equation:
ΔU = mCpΔT
where:
ΔU = internal energy
m = mass of substance
Cp = specific heat capacity of substance
ΔT = change in temperature
ΔU = 2722 Joules = 16.2 grams (9.22 J/g-°C) (Tf - 26°C)
This gives a final temperature of Tf = 44.22 °C