Answer: the rate at which the distance between the boats is increasing is 68 mph
Step-by-step explanation:
The direction of movement of both boats forms a right angle triangle. The distance travelled due south and due east by both boats represents the legs of the triangle. Their distance apart after t hours represents the hypotenuse of the right angle triangle.
Let x represent the length the shorter leg(south) of the right angle triangle.
Let y represent the length the longer leg(east) of the right angle triangle.
Let z represent the hypotenuse.
Applying Pythagoras theorem
Hypotenuse² = opposite side² + adjacent side²
Therefore
z² = x² + y²
To determine the rate at which the distances are changing, we would differentiate with respect to t. It becomes
2zdz/dt = 2xdx/dt + 2ydy/dt- - - -- - -1
One travels south at 32 mi/h and the other travels east at 60 mi/h. It means that
dx/dt = 32
dy/dt = 60
Distance = speed × time
Since t = 0.5 hour, then
x = 32 × 0.5 = 16 miles
y = 60 × 0.5 = 30 miles
z² = 16² + 30² = 256 + 900
z = √1156
z = 34 miles
Substituting these values into equation 1, it becomes
2 × 34 × dz/dt = (2 × 16 × 32) + 2 × 30 × 60
68dz/dt = 1024 + 3600
68dz/dt = 4624
dz/dt = 4624/68
dz/dt = 68 mph
Hi there, -5*10/9*8=-50/72, -50/72 simplified is -25/36. Therefore, the answer is A. -25/36
1. 3x - 2y = 0 => y = 3/2x
4x + 2y = 14<=> 4x + 2*(3/2x) = 14<=> 7x = 14<=> x = 2 & y = 3
2.3p + q = 7=> q = 7 - 3p
2p - 2q = -6<=> 2p - 2*(7-3p) = -6<=> 2p - 14 + 6p = -6<=> 8p = -6 + 14 = 8<=> p = 1 & q = 4
3.3x - 2y = 1=> x = (1+2y)/3
8x + 3y = 2<=> 8*(1+2y)/3 + 3y = 2<=> 8*(1+2y)/3 - 2 = -3y<=> 3*(8*(1+2y)/3 - 2) = -3*(3y)<=> 8*(1+2y) - 6 = -9y<=> 8 + 16y - 6 = -9y<=> 2 = -25y<=> y = -2/25 & x = 7/25
<h2>60,47,73</h2>
Step-by-step explanation:
Let the first angle be
degrees
Let the second angle be
degrees
Let the third angle be
degrees
It is given that sum of angles is
degrees.
so,
...(i)
It is given that sum of the measures of the second and third angles is two times the measure of the first angle.
...(ii)
It is given that the third angle is 26 more than the second.
...(iii)
using (ii) and (iii),


using (i),(ii) and (iii),




