Answer : The value of rate constant is, 
Explanation :
First we have to calculate the rate constant, we use the formula :
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = ?
t = time passed by the sample = 4.84 s
a = initial concentration = 4.17 M
a - x = concentration after time 4.84 s = 3.56 M
Now put all the given values in above equation, we get


Therefore, the value of rate constant is, 
<span>The part of making a solution that always releases energy is the overall change in forming the solution. The answer is letter D. Although letters A, B and C can be viable answers but, it is not always the case. There are some substances that when you mix or separate them requires more energy or less energy. An example would be w</span>hen the formation (or enthalpy of formation) of carbon
dioxide is negative, it means that it releases heat to the surroundings. When
it releases heat to the surroundings, the reaction is exothermic. Another example is when you mix baking soda and muriatic acid, the resulting mixture is colder. When it is cold, it means that the reaction is endothermic. So the best answer is letter D.
Answer:
2.81 × 10⁶ mm³
2.81 × 10⁻³ m³
Explanation:
Step 1: Given data
Length (l): 250 mm
Width (w): 225 mm
Thickness (t): 50 mm
Step 2: Calculate the volume of the textbook
The book is a cuboid so we can find its volume (V) using the following expression.
V = l × w × t = 250 mm × 225 mm × 50 mm = 2.81 × 10⁶ mm³
Step 3: Convert the volume to cubic meters
We will use the relationship 1 m³ = 10⁹ mm³.
2.81 × 10⁶ mm³ × 1 m³ / 10⁹ mm³ = 2.81 × 10⁻³ m³
Answer:
A model or simulation is only as good as the rules used to create it. It is very difficult to create an entirely realistic model or simulation because the rules are based on research and past events. The main disadvantage of simulations is that they aren't the real thing.
Explanation: