Hi there!

To find the potential energy of the ball at B, we can use the equation:
PE = mgh
Plug the given gravity, mass, and height:
PE = (1.5)(0.5)(9.8) = 7.35 J
At A, all of this potential energy is changed to kinetic energy, so we can use the following equation:
v = √2KE/m
Plug in the solved for energy and mass:
v = √2(7.35)/1.5
Solve:
v ≈ 3.13 m/s
The answer is:
All the above
The explanation:
The volume and the temperature and the number of particles will affect the pressure of an enclosed gas.
because according to boyle's law when the temperature constant so the pressure and volume of a gas have an inverse relationship, when temperature is constant.
when:
PV = nRT
when p is the pressure
V is the volume
n is number of moles
T is temperature
from this law we can know that there is a relation between P and V and when n has a relation with the number of particles so:
volume , temperature and number of particles affect the pressure of an enclosed gas.
Your answer is correct: Resident 4 would provide the scientist with the most valid results.
Answer:
Energy implies as the object’s capability to perform work. It is something that cannot be created or destroyed but can only be transformed. An object loses its energy, when it performs work, whereas it gains energy when the work is performed on it. Energy is broadly classified as kinetic energy and potential energy. While kinetic energy is the energy which an object contains because of a particular motion.
On the other hand, potential energy is the stored energy, because of its state of rest. As both the two forms of energy are measured in joules, people get easily confused between these two. So, take a read of the article which will help you to understand the differences between kinetic and potential energy.
Explanation:
Hope this helps - Good luck ^w