Answer:
18.1 × 10⁻⁶ A = 18.1 μA
Explanation:
The current I in the wire is I = ∫∫J(r)rdrdθ
Since J(r) = Br, in the cylindrical wire. With width of 10.0 μm, dr = 10.0 μm. r = 1.20 mm. We have a differential current dI. We integrate first by integrating dθ from θ = 0 to θ = 2π.
So, dI = J(r)rdrdθ
dI/dr = ∫J(r)rdθ = ∫Br²dθ = Br²∫dθ = 2πBr²
Now I = (dI/dr)dr at r = 1.20 mm = 1.20 × 10⁻³ m and dr = 10.0 μm = 0.010 mm = 0.010 × 10⁻³ m
I = (2πBr²)dr = 2π × 2.00 × 10⁵ A/m³ × (1.20 × 10⁻³ m)² × 0.010 × 10⁻³ m = 0.181 × 10⁻⁴ A = 18.1 × 10⁻⁶ A = 18.1 μA
Answer: The electromagnetic waves reach Earth, while the mechanical waves do not.
Explanation:
Answer:
The room with the lower temperature
Explanation:
Using
PV=nRT
Since both the rooms same volume and are connected, so they will have same pressure
PV=nRT=constant
nT=Constant/R=constant
If T is more n has to be less
Thus, lower the temperature, more the number molecules.
Answer:
The generation of <u>heat</u>.
Explanation:
Answer:
Law conservation of charge (D)
Explanation: