1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bazaltina [42]
3 years ago
11

John is preparing for his way to school. His house is 30 km away. What time will he be in school if he leaves his house at 6:30

AM and travels at an average speed of 40 km/hr?
Physics
1 answer:
Goshia [24]3 years ago
7 0

Answer:

Jio will be at school at 7:15 a.m.

Explanation:

Formula:

t= s/v =(30km)/(40km/h) =0.75•60min=45min.

Then, Jio will be at school at 6:30a.m. + 45min =7:15a.m.

You might be interested in
What is the weight of a box with a mass of 150 kg on Earth?
Dmitry [639]

Answer:

W = M g = 150 kg * 9.81 m/s^2 = 1470 N

You were only given 3 significant figures in the question.

6 0
2 years ago
The two main states of mechanical energy are ___________ and potential energy.
shutvik [7]
<span>Potential energy and Kinetic energy</span>
6 0
3 years ago
Read 2 more answers
a particle is moving along a circular path having a radius of 4 in such that its position as a function of time is given by thet
ANTONII [103]

Answer:

Explanation:

Given

radius of circular path r=4\ in.

Position is given by

\theta =\cos 2t---1

Differentiate 1  to angular velocity we get

\frac{\mathrm{d} \theta }{\mathrm{d} t}=\omega =-2\sin 2t----2

Differentiate 2 to get angular acceleration

\frac{\mathrm{d} \omega }{\mathrm{d} t}=-2^2\cos 2t ---3

Net acceleration is the vector summation of tangential and centripetal force

a_t=\alpha \times r

a_t=-4\cos 2t\times 4=-16\cos 2t

a_r=\omega ^2\cdot r

a_r=(-2\sin 2t)^2\cdot 4

a_r=16\sin^2(2t)

a_{net}=\sqrt{a_r^2+a_t^2}

a_{net}=\sqrt{(16\sin ^2(2t)+(-16\cos 2t)^2}

a_{net}=\sqrt{256\cos ^2(2t)+256\sin ^4(2t)}                                                    

6 0
3 years ago
A key falls from a bridge that is 45 m above the water. the key falls straight down and lands in a model boat traveling at a con
erastova [34]

Let the key is free falling, therefore from equation of motion

h = ut +\frac{1}{2}gt^2..

Take initial velocity, u=0, so

h = 0\times t + \frac{1}{2}g t^2= \frac{1}{2}gt^2.

h = 0\times t + \frac{1}{2}g t^2= \frac{1}{2}gt^2 \\\ t =\sqrt{\frac{2h}{g} }

As velocity moves with constant velocity of 3.5 m/s, therefore we can use formula

d= v \times t

From above substituting t,

d = v \times \sqrt{\frac{2h}{g} }.

Now substituting all the given values and g = 9.8 m/s^2, we get

d = 3.5 \ m/s \times \sqrt{\frac{2 \times 45 m}{9.8 m/s^2} } = 10.60 m.

Thus, the distance the boat was from the point of impact when the key was released is 10.60 m.

7 0
3 years ago
You set your stationary bike on a high 80-N friction-like resistive force and cycle for 30 min at a speed of 8.0 m/s . Your body
stellarik [79]

A) The change in internal chemical energy is 1.15\cdot 10^7 J

B) The time needed is 1 minute

Explanation:

First of all, we start by calculating the power output of you and the bike, given by:

P=Fv

where

F = 80 N is the force that must be applied in order to overcome friction and travel at constant speed

v = 8.0 m/s is the velocity

Substituting,

P=(80)(8.0)=640 W

The energy output is related to the power by the equation

P=\frac{E}{t}

where:

P = 640 W is the power output

E is the energy output

t = 30 min \cdot 60 = 1800 s is the time elapsed

Solving for E,

E=Pt=(640)(1800)=1.15\cdot 10^6 J

Since the body is 10% efficient at converting chemical energy into mechanical work (which is the output energy), this means that the change in internal chemical energy is given by

\Delta E = \frac{E}{0.10}=\frac{1.15\cdot 10^6}{0.10}=1.15\cdot 10^7 J

B)

From the previous part, we found that in a time of

t = 30 min

the amount of internal chemical energy converted is

E=1.15\cdot 10^7 J

Here we want to find the time t' needed to convert an amount of chemical energy of

E'=3.8\cdot 10^5 J

So we can setup the following proportion:

\frac{t}{E}=\frac{t'}{E'}

And solving for t',

t'=\frac{E't}{E}=\frac{(3.8\cdot 10^5)(30)}{1.15\cdot 10^7}=1 min

Learn more about power and energy:

brainly.com/question/7956557

#LearnwithBrainly

3 0
3 years ago
Other questions:
  • Which of the following statements is an accurate description of sound transmission through various mediums?
    13·2 answers
  • forces are caused by the interactions between tiny charged particles. A. Electric B. Nuclear C. Magnetic D. Gravitational
    6·2 answers
  • g 0 g bullet is fired horizontally into a 1.20 kg wooden block resting on a horizontal surface. The coefficient of kinetic frict
    7·1 answer
  • What do you know about tides?
    12·1 answer
  • What is the critical angle θcrit for light propagating from a material with index of refraction of 1.50 to a material with inde
    8·1 answer
  • A dog running at a speed of 12 m/s has 1,080 J of kinetic energy. What is the mass of the dog
    15·1 answer
  • Please hellp!!!!!!!!!!!!!!!!!!!!?
    10·2 answers
  • What is the displacement from 0 to 35.5 seconds
    10·2 answers
  • What is the difference between thrust and applied force?
    9·1 answer
  • an object is held 33.5 cm from a convex mirror. it creates a virtual image of magnification 0.253. what is the focal length of t
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!