The number of years that will pass before the radius of the Moon's orbit increases by 3.6 x 10^6 m will be 90000000 years.
<h3>How to compute the value?</h3>
From the information given, the orbit of the moon is increasing in radius at approximately 4.0cm/yr.
Therefore, we will convey the centimeters to meter. This will be 4cm will be:
= 4/100 = 0.04m/yr.
Time = Distance / Speed
Time = 3.6 x 10^6/0.04
Time = 90000000 years.
Learn more about moon on:
brainly.com/question/13262798
#SPJ1
Complete question:
Tidal friction is slowing the rotation of the Earth. As a result, the orbit of the moon is increasing in radius at approximately 4.0cm/y. Assuming this rate to be constant how many years will pass before the radius of the Moon's orbit increases by 3.6 x 10^6
<span>They both used charged particles in their experiments.</span>
The work done onto the car is 506,250 J
The work done on a system implies an increase in the internal energy of the system as a result of some forces acting on the system from the outside.
From the parameters given:
- The mass of the car = 1500 kg
- The initial speed = 30 m/s
- The final speed = 15 m/s
The work done onto the car refers to the change in the kinetic energy (i.e. ΔK.E)



= 506,250 J
Therefore, we can conclude that the work done on the car is 506,250 J
Learn more about work done here:
brainly.com/question/18762601
Answer:

Explanation:
First ship starts at Noon with speed 20 Knots towards West
now we know that 2nd ship starts at 6 PM with speed 15 Knots towards North West
so after time "t" of 2nd ship motion the two ships positions are given as


now we can find the distance between two ships as

now we have


now we will differentiate it with respect to time

here we know that

so we have

now we have

