Answer:
(a): a = 0.4m/s²
(b): α = 8 radians/s²
Explanation:
First we propose an equation to determine the linear acceleration and an equation to determine the space traveled in the ramp (5m):
a= (Vf-Vi)/t = (2m/s)/t
a: linear acceleration.
Vf: speed at the end of the ramp.
Vi: speed at the beginning of the ramp (zero).
d= (1/2)×a×t² = 5m
d: distance of the ramp (5m).
We replace the first equation in the second to determine the travel time on the ramp:
d = 5m = (1/2)×( (2m/s)/t)×t² = (1m/s)×t ⇒ t = 5s
And the linear acceleration will be:
a = (2m/s)/5s = 0.4m/s²
Now we determine the perimeter of the cylinder to know the linear distance traveled on the ramp in a revolution:
perimeter = π×diameter = π×0.1m = 0.3142m
To determine the angular acceleration we divide the linear acceleration by the radius of the cylinder:
α = (0.4m/s²)/(0.05m) = 8 radians/s²
α: angular aceleration.
Answer:
Non-uniform velocity as the laser light beam has got reflected by the mirror
And as the light got reflected there is a change in velocity making it non-uniform velocity
Ek = 6KJ.
In physics, the kinetic energy of a body or object is the one that owns due to its movement and is given by the equation
, where m is the mass of the object in kilograms and v is the velocity in m/s.
An object that it has a mass of 30 kilograms and moves with a velocity of 20m/s, its kinetic energy is given by:

Answer: the process of an animal or plant breeding with an individual of another species or variety
Explanation:
there you go