To solve this problem we will apply the concept related to the heat transferred to a body to reach a certain temperature. This concept is shaped by the energy ratio of a body which is the product of the mass, its specific heat and the change in temperature. For the specific case, it will be the sum of the heat transferred to the Water, the Aluminum and the loss due to latency due to vaporization in the water. That is to say,

Here,
= Mass of Aluminum
= Specific Heat of Aluminum
= Specific Heat of Water
Mass of water
Latent of Vaporization
Replacing,

Converting,


Therefore is required 440.409kCal
The atomic number of beryllium (Be) is 4, and the atomic number of barium (Ba) is 56. the <span>comparison is best supported by this information is that beryllium has a lower atomic radius than Barium</span>
Answer:
The charges under study are of the same sign
The calculation of the electric field for each charge separately, there is no relationship between the charges
Explanation:
Let's start by writing the equation for the electric field
E = k q / r²
where q is the charge under analysis and r the distance from this charge to a positive test charge.
When analyzing the statement the student has some problems.
* The charges under study are of the same sign, it does not matter if positive or negative.
* The calculation of the electric field for each charge separately, there is no relationship between the charges for the calculation of the electric field.
* What is added is the interaction of the electric field with the positive test charge, in this case each field has the opposite direction to the other, so the vector sum gives zero
Answer:
Acceleration=3.95
Explanation:Use the formula a=m/f
a=128.6/32.5
a=3.95