KE=1/2MV2
So 1/2(650)(20)squared
1/2(650)(400)
200(650)
130,000 J
La cinemática permite encontrar la respuesta para la aceleracion del cuerpo en el cañón es:
a = 1,8 10⁶ m/s²
La cinemática estudia el movimiento de los cuerpos, buscando relaciones entre la posicion, la velocidad y la aceleración.
v² = v₀² + 2 a x
Donde v y v₀ son la velocidad actual e inicial, respectivamente, a es la aceleracion y x la distancia recorrida.
Indica que la longitud de cañon es x= 18 m la velocidad de salida es
v= 29000 km/h (
) (
s) = 8,055,56 m/s.
La velocidad inicial del proyectil es cero.
a =
a =
a = 1,8 10⁶ m/s²
En conclusión usando la cinemática podemos encontrarla respuesta para la aceleracion del cuerpo en el cañón es:
a = 1,8 10⁶ m/s²
Aprender mas aquí: brainly.com/question/19793086
Answer:
Rate at which current flows is measured in amperes
Explanation:
The rate of flow of electrons constitutes the current. The electrons flow from lower electric potential to higher electric potential. When there is no potential difference then no electron will flow. The direction of the current and the electron are in opposite direction.
The direction of electron from the negative terminal to the positive terminal. The direction of current is from the positive terminal to the negative terminal.The current is measured in ampere.
The expression for current and the charge is as;
Here, q is the charge, t is the time taken and I is the current.
According to the given problem, Jodi made a list about electric current to help her study for a test. He described that electrons move from areas of low to high electric potential, voltage causes current to flow and movement of electrons is continuous in a current.
But he did error. It should be "rate at which charges flow" instead of rate at which current flow.
Therefore, the option (4) is correct.
Answer:
The magnitude of the electric field intensity is
Explanation:
From the question we are told that
The voltage is 
The thickness of the membrane is
Generally the electric field intensity is mathematically represented as

substituting values


“to predict the speed that a coaster will reach before it is ever placed on the track. ... When coaster goes up by height h then its gravitational potential energy increases by the amount m.g.h where m = mass of coaster, h = height of coaster and g = gravitational acceleration due to Earth”