Answer: 148348.6239 kg•m/s
Explanation: Firstly, we need to convert the 14700 N into kilograms, and to do so, use the formula net force is equal to mass times acceleration and rearrange the formula to find mass like shown below...
F = ma
F/a = m
14700/9.81 = 1498.470948 kg, this is your mass
Now that we convert it into kilograms, plug all the numbers into the variable of the momentum formula.
Momentum formula is P = mass x velocity
Like this:
P = 1498.470948 x 99
p = 148348.6239 kg•m/s.
I believe that is your answer, hope that helps you even a bit out.
Thanks.
Answer:
The magnitude of change in momentum is (2mv).
Explanation:
The momentum of an object is given by the product of mass and velocity with which it is moving.
Let the mass of ball is m. A tennis player smashes a ball of mass m horizontally at a vertical wall. The ball rebounds at the same speed v with which it struck the wall.
Initial speed of the ball is v and final speed, when it rebounds, is (-v). The change in momentum is given by :
p = final momentum - initial momentum

So, the magnitude of change in momentum is (2mv).
The statements that are held true with regards to the static equilibrium of bodies are:
<span>The net torque acting on the object must equal zero
</span><span>The net torque on the object does not have to be zero if the net force on the object is zero
Furthermore, when a body is in a state of static equilibrium, the summation of all forces, either vertically or horizontally, must be equal to zero. </span>
Answer:
The final velocity of the car is 1.85 m/s
Explanation:
Hi there!
The initial kinetic energy of the toy car can be calculated as follows:
KE = 1/2 · m · v²
Where:
KE = kinetic energy.
m = mass.
v = velocity.
KE = 1/2 · 0.100 kg · (2.66 m/s)² = 0.354 J
The gain in altitude produces a gain in potential energy. This gain in potential energy is equal to the loss in kinetic energy. So let´s calculate the potential energy of the toy car after gaining an altitude of 0.186 m.
PE = m · g · h
Where:
PE = potential energy.
m = mass.
g = acceleration due to gravity.
h = height.
PE = 0.100 kg · 9.8 m/s² · 0.186 m = 0.182 J
The final kinetic energy will be: 0.354 J - 0.182 J = 0.172.
Using the equation of kinetic energy, we can obtain the velocity of the toy car after running up the slope:
KE = 1/2 · m · v²
0.172 J = 1/2 · 0.100 kg · v²
2 · 0.172 J / 0.100 kg = v²
v = 1.85 m/s
The final velocity of the car is 1.85 m/s