Answer:
Static friction is what keeps the box from moving without being pushed, and it must be overcome with a sufficient opposing force before the box will move. Kinetic friction (also referred to as dynamic friction) is the force that resists the relative movement of the surfaces once they're in motionExplanation:
#if you need any questions answered within mins/secs hit me up and I got you
:)
Wave speed = frequency * wavelength
Input the numbers into this equation :
Wave speed = 200 * 3
Work it out and you will get the answer :
Wave speed = 600 m/s
<h3><u>Answer</u>;</h3>
1600 years
<h3><u>Explanation</u>;</h3>
- Half life is the time taken for a radioactive isotope to decay by half of its original amount.
- We can use the formula; N = O × (1/2)^n ; where N is the new mass, O is the original amount and n is the number of half lives.
- A sample of radium-226 takes 3200 years to decay to 1/4 of its original amount.
Therefore;
<em>1/4 = 1 × (1/2)^n</em>
<em>1/4 = (1/2)^n </em>
<em>n = 2 </em>
Thus; <em>3200 years is equivalent to 2 half lives.</em>
<em>Hence, the half life of radium-226 is 1600 years</em>
Answer:
(a) m = 1.6 x 10²¹ kg
(b) K.E = 2.536 x 10¹¹ J
(c) v = 7.12 x 10⁵ m/s
Explanation:
(a)
First we find the volume of the continent:
V = L*W*H
where,
V = Volume of Slab = ?
L = Length of Slab = 4450 km = 4.45 x 10⁶ m
W = Width of Slab = 4450 km = 4.45 x 10⁶ m
H = Height of Slab = 31 km = 3.1 x 10⁴ m
Therefore,
V = (4.45 x 10⁶ m)(4.45 x 10⁶ m)(3.1 x 10⁴ m)
V = 6.138 x 10¹⁷ m³
Now, we find the mass:
m = density*V
m = (2620 kg/m³)(6.138 x 10¹⁷ m³)
<u>m = 1.6 x 10²¹ kg</u>
<u></u>
(b)
The kinetic energy will be:
K.E = (1/2)mv²
where,
v = speed = (1 cm/year)(0.01 m/1 cm)(1 year/365 days)(1 day/24 h)(1 h/3600 s)
v = 3.17 x 10⁻¹⁰ m/s
Therefore,
K.E = (1/2)(1.6 x 10²¹ kg)(3.17 x 10⁻¹⁰ m/s)²
<u>K.E = 2.536 x 10¹¹ J</u>
<u></u>
(c)
For the same kinetic energy but mass = 77 kg:
K.E = (1/2)mv²
2.536 x 10¹¹ J = (1/2)(77 kg)v²
v = √(2)(2.536 x 10¹¹ J)
<u>v = 7.12 x 10⁵ m/s</u>