That's a very difficult question to answer, because you give us
no information regarding what you have done in your life.
We can only assume that you have most likely breathed on occasion,
floated on your back in the ocean, lake or pool, maybe fallen off of a
ladder or out of bed, felt the warmth of the sun on your cheek, seen
a rainbow after a rainshower, heard the sound of thunder during a
summer storm, taken a trip in an airplane, and waited for a cup of
hot chocolate to cool off. The richness of any of these experiences
is greatly enhanced when you understand some of the Physics involved.
Answer:
60N
Explanation:
in this case the minimum amount of force required must be equal to the friction Force. i.e <u>Newton</u><u>'s</u><u> </u><u>first</u><u> </u><u>law</u><u> of</u><u> </u><u>mot</u><u>ion</u><u>.</u>
therefore the maximum amount of frictional force is equal to the applied force which is 60N.
because of the net force acting on the object is zero the object is in constant motion . i.e equal and opposite force must be applied so that the object is in constant velocity therefore the total frictional force must be 60N
less mass is more mass but less energy in more mass. less mass has more energy
Answer:
0.0675 seconds
Explanation:
From the question,
We apply newton's second law of motion
F = m(v-u)/t.................... Equation 1
Where F = force exert by the brake, v = final speed, u = initial speed m = mass of the bicycle, t = time.
make t the subject of the equation
t = m(v-u)/F................... Equation 2
Given: m = 180 kg, u = 6.0 m/s, v = 0 m/s (comes to stop), F = -1600 N ( agianst the dirction of motion)
Substitute these value into equation 2
t = 180(0-6.0)/-1600
t = -1080/-1600
t = 0.0675 seconds.
Answer:
The final velocity of the ball is 39.2 m/s.
Explanation:
Given that,
A ball is dropped from rest from a high window of a tall building.
Time = 4 sec
We need to calculate the final velocity of the ball
Using equation if motion
Where, v = final velocity
u = initial velocity
g = acceleration due to gravity
t = time
Put the value into the formula
Hence, The final velocity of the ball is 39.2 m/s.