Velocity and mass are directly proportional to the quantity of momentum by:
p = mv. Therefore, and increase in either velocity or mass will lead to an increase in momentum and vice versa. Momentum during a reaction is always conserved, meaning that the mass and initial velocity before a reaction will always be equal to the change in mass and velocity produced after the reaction. Kinetic energy after a reaction, however, is not always conserved. For example if a fast moving vehicle collided with a stationary vehicle, and moved together, the overall kinetic energy would be after the reaction, as a heaver mass would be moved by the same velocity causing a decrease in kinetic energy.
I don't know if this is exactly what you are looking for, but in physics this is how it is understood.
Answer: an increase in the concentration of
in aqueous solutions and is capable of donating one or more 
Explanation:
According to Arrhenius concept, a base is defined as a substance which donates hydroxide ions
when dissolved in water and an acid is defined as a substance which donates hydrogen ions
in water.
According to the Bronsted Lowry conjugate acid-base theory, an acid is defined as a substance which donates protons and a base is defined as a substance which accepts protons.
According to the Lewis concept, an acid is defined as a substance that accepts electron pairs and base is defined as a substance which donates electron pairs.
Thus According to the Arrhenius concept, an acid is a substance that causes an increase in the concentration of
in aqueous solutions and is capable of donating one or more 
Answer: The charge on the plates are 88.4 picafarad
Explanation:The equation used in measuring charge in a plate is given as:
C=Q/V =E A/D
Where E= dielectric content
A= Area of plates
d= distance between plates
Using dielectric constant for Air=8.84×10-12F/m
A=100cm2=0.01m2
d=10mm=0.001m
C= 8.84×10-12×0.01/0.001
C= 88.4 picafarad
Answer:
D
Explanation:
the H2O2 under go reduction to remove O2 and then forms water