You would multiply the speed by the time. So the answer would be 840 miles.
The weight of an object when calculated by multiplying with the pull of the gravity is dependent on the mass of the object and the value of g. The value of g is constant however is still dependent on the distance of the object from the center of the Earth. Thus, the answers are <em>mass and distance. </em>
Answer:
A collision in which both total momentum and total kinetic energy are conserved
Explanation:
In classical physics, we have two types of collisions:
- Elastic collision: elastic collision is a collision in which both the total momentum of the objects involved and the total kinetic energy of the objects involved are conserved
- Inelastic collision: in an inelastic collision, the total momentum of the objects involved is conserved, while the total kinetic energy is not. In this type of collisions, part of the total kinetic energy is converted into heat or other forms of energy due to the presence of frictional forces. When the objects stick together after the collision, the collisions is called 'perfectly inelastic collision'
Answer:
Explanation:
Using the principle of moment, assuming the rod is uniform rod of mass 1 kg
the center of mass of the rod will be at 1 m
assuming the system is in equilibrium,
clockwise moment = anticlockwise moment
let the distance of the man shoulder be x from the center of gravity and also is the pivot point
total mass of bucket + mass of honey = 2kg + 3 kg = 5 kg for rear bucket and
2kg + 5 kg = 7 kg for front bucket
( 5kg × ( 1+x)) + ( 1 kg × x) = 7 kg × ( 1 - x)
5 + 5 x + x = 7 - 7x
5 + 6x = 7 - 7x
6x + 7x = 7 - 5
13x = 2
x = 2 / 13 = 0.154 m
the honeybucket man's shoulder is 0.154 m from the center of the pole ( forward ).
Answer:
wavelength decreases and frequency increase
Explanation:
the higher the wavelength the smaller the frequency , the smaller the wavelength the higher the frequency