Answer:
![\frac{(\sin 18^\circ)}{75} = \frac{(\sin 35^\circ)}{x}](https://tex.z-dn.net/?f=%5Cfrac%7B%28%5Csin%2018%5E%5Ccirc%29%7D%7B75%7D%20%3D%20%5Cfrac%7B%28%5Csin%2035%5E%5Ccirc%29%7D%7Bx%7D)
Step-by-step explanation:
Incomplete question:
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em>See attachment for complete question</em>
Required
Determine the equation to find x
First, is to complete the angles of the triangle (ABC and ACB)
--- angle on a straight line
![\angle ABC + 53= 180](https://tex.z-dn.net/?f=%5Cangle%20ABC%20%2B%2053%3D%20180)
Collect like terms
![\angle ABC =- 53+ 180](https://tex.z-dn.net/?f=%5Cangle%20ABC%20%3D-%2053%2B%20180)
![\angle ABC =127^\circ](https://tex.z-dn.net/?f=%5Cangle%20ABC%20%3D127%5E%5Ccirc)
--- angles in a triangle
![\angle ACB + 127 + 35 = 180](https://tex.z-dn.net/?f=%5Cangle%20ACB%20%2B%20127%20%2B%2035%20%3D%20180)
Collect like terms
![\angle ACB =- 127 - 35 + 180](https://tex.z-dn.net/?f=%5Cangle%20ACB%20%3D-%20127%20-%2035%20%2B%20180)
![\angle ACB =18](https://tex.z-dn.net/?f=%5Cangle%20ACB%20%3D18)
Apply sine rule
![\frac{\sin A}{a} = \frac{\sin B}{b}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csin%20A%7D%7Ba%7D%20%3D%20%5Cfrac%7B%5Csin%20B%7D%7Bb%7D)
In this case:
![\frac{\sin ACB}{AB} = \frac{\sin CAB}{x}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csin%20ACB%7D%7BAB%7D%20%3D%20%5Cfrac%7B%5Csin%20CAB%7D%7Bx%7D)
This gives:
![\frac{(\sin 18^\circ)}{75} = \frac{(\sin 35^\circ)}{x}](https://tex.z-dn.net/?f=%5Cfrac%7B%28%5Csin%2018%5E%5Ccirc%29%7D%7B75%7D%20%3D%20%5Cfrac%7B%28%5Csin%2035%5E%5Ccirc%29%7D%7Bx%7D)
Answer:
I believe it’s C
Step-by-step explanation:
let me know if right if am mark brainliest pls
Answer:
akuy3uwujwu
Step-by-step explanation:
uwoedihwo
Answer:
1600 integers
Step-by-step explanation:
Since we have a four digit number, there are four digit placements.
For the first digit, since there can either be a 5 or an 8, we have the arrangement as ²P₁ = 2 ways.
For the second digit, we have ten numbers to choose from, so we have ¹⁰P₁ = 10.
For the third digit, since it neither be a 5 or an 8, we have two less digit from the total of ten digits which is 10 - 2 = 8. So, the number of ways of arranging that is ⁸P₁ = 8.
For the last digit, we have ten numbers to choose from, so we have ¹⁰P₁ = 10.
So, the number of integers that can be formed are 2 × 10 × 8 × 10 = 20 × 80 = 1600 integers
Answer:
may we please have some more info on the question?
Step-by-step explanation: