In one mole of glucose 38 ATP energy is stored this accounts for only 40 per-cent of the total energy in glucose.
Explanation:
In standard conditions, during the cellular respiration 1 mole of Glucose in the presence of oxygen produces 36 or 38 ATPs. This accounts for only 40% of the total energy as the remaining 60 per-cent of the energy is dissipated as heat.
I mole of glucose enters the glycolysis step of aerobic cellular respiration which after oxidative phosphorylation and Electron transport chain would give 38 ATP molecules.
It can be said that only 38.3% of energy is put in ATP molecules.
Answer:
sp3d
Explanation:
The ground state electronic configuration of tin is written as; [Kr] 5s²4d¹⁰5p². Hybridization is a concept used to explain the combination of orbitals of appropriate energy to produce suitable orbitals that could be used for bonding.
In forming the compound Snf5^ -1, we have to hybridize the following orbitals on tin; 5p, 5d and 6s orbitals. This gives us a set of sp3d hybrid hence the answer.
Kc= concentration of product divided by concentration of reactant
NO + NO2 ----> N2O3
Kc =(N2O3) / (No)(NO2)
Kc= ( 1.3 )/{ (3.9)(3.8) }
Kc=0.088 ( answer B)
The reactivity of a metal is determined by how tightly the metal holds onto the electrons in the outermost energy levels (valence electrons)
Answer:
Second step: 4-bromo-1-methyl-2-nitrobenzene.
Third step: 1.5-dibromo-2-methyl-3-nitrobenzene.
Explanation:
To solve this exercise I will use the concepts of electrophilic substitution. In these reactions, a functional group is displaced by an electrophile. In the attached image are the two main products.